Investigating the reproductive migration and spatial ecology of Nassau grouper (*Epinephelus striatus*) on Little Cayman Island using acoustic tags — An Overview BRICE X. SEMMENS¹, KIRSTEN E. LUKE², PHILLIPPE G. BUSH³, ²CHRISTY PATTENGIL-SEMMENS, BRADLEY JOHNSON³, CROY MCCOY³ and SCOTT HEPPELL⁴ ¹ Reef Environmental Education Foundation (REEF) Pacific Coast Office, 4726 38th Ave NE, Seattle, WA 98105 ²Coastal Ecology & Conservation Research Group U.S. Geological Survey, Center for Aquatic Resource Studies, 7920 NW 71st St., Gainesville, FL 32653 ³Department of Environment, Cayman Islands Government, P.O. Box 486GT, Grand Cayman, Cayman Islands ⁴Department of Fisheries and Wildlife, 104 Nash Hall, Oregon State University, Corvallis, OR 97331 The Cayman Islands Department of Environment needs to assess the effectiveness of Nassau grouper (*Epinephelus striatus*) spawning aggregation site closures by gaining a better understanding of how local grouper populations use the aggregation sites. During the January 2005 spawning season thirty Nassau grouper were acoustically tagged off the Little Cayman west end aggregation site and during the summer of 2005 an additional twenty Nassau groupers were tagged around Little Cayman. By tagging fish on the aggregation we have been able to determine where fish go after they leave the spawning aggregation. By tagging fish around Little Cayman prior to the 2006 spawning season we will be able to determine the proportion of fish from around the Island that attend the west end spawning aggregation. Also, the frequency of aggregation attendance by individual fishes as a function of demography will be assessed. Initial results show that 60% of the groupers tagged during the January, 2005 aggregation returned to aggregate during the February full moon. Furthermore, these 18 returning fish were amongst the largest of the 30 tagged. Ultimately, this information will allow us to assess the current and future impacts of protections afforded Cayman's spawning aggregations. Moreover, the study will define an aggregation's "sphere of influence" both geographically and demographically and will thus aid in the management of local Nassau grouper populations. KEY WORDS: Nassau grouper, spawning aggregation, acoustic tag El departamento de las islas de cayman del ambiente necesita determinar la eficacia del grouper de Nassau (*Epinephelus striatus*) que freza encierros del sitio de la agregación ganando una comprensión mejor de cómo las poblaciones locales del grouper utilizan los sitios de la agregación. Durante la estación de freza de enero 2005 treinta Nassau el grouper acústico fue marcado con etiqueta del pequeño sitio de la agregación del final del oeste del cayman y durante el verano 2005 de veinte Nassau los groupers fueron marcados con etiqueta alrededor de pequeño cayman. Marcando pescados con etiqueta en la agregación hemos podido determinarse adónde van los pescados después de que salgan de la agregación de freza. Marcando pescados con etiqueta alrededor del pequeño cayman antes de las 2006 estaciones de freza podremos determinar la proporción de los pescados alrededor de la isla que atienden a la agregación de freza del final del oeste. También, la frecuencia de la atención de la agregación por los pescados individuales en función de la demografía será determinada. Los resultados iniciales demuestran que el 60% de los groupers marcaron con etiqueta durante la agregación de enero vuelta al agregado durante la Luna Llena de febrero. Además, estos 18 pescados que volvían estaban entre el más grande de los 30 marcados con etiqueta. En última instancia, esta información permitirá que determinemos los impactos actuales y futuros de las agregaciones de freza del cayman producido las protecciones. Por otra parte, el estudio definirá esfera de una agregación la "de la influencia" geográficamente y demográfico y la ayudará así en la gerencia de las poblaciones locales del grouper de Nassau. PALABRAS CLAVES: Grouper de Nassau, frezando las agregaciones, etiqueta acústica, migración #### INTRODUCTION Nassau grouper (*Epinephelus striatus*) migrate to specific sites during the winter full moons in order to reproduce in mass aggregations (Domeier & Colin 1997, Bolden 2000, Sala et al. 2001). The Nassau grouper is listed as 'threatened' by the World Conservation Union (formerly International Union for the Conservation of Nature and Natural Resources; IUCN, 2002). Intense harvesting of spawning aggregations is the primary cause of the precipitous decline in populations throughout the Caribbean (Beets & Hixon 1994, Sadovy & Eklund 1999). In recent years, several Caribbean governments have instituted marine protected areas at known Nassau grouper aggregation sites in response to chronic declines in catch. Spawning aggregations of reef fishes are of concern to fisheries management because they result in the concentration of individuals from stocks that are otherwise at low densities, and aggregations are disproportionately responsible for the reproductive output of many economically valuable and ecologically important species (Domeier and Colin 1997). Because aggregations are site specific, designating aggregation sites as marine protected areas is likely to be a successful conservation measure. It is important, however, to evaluate the scope of protections afforded stocks through the protection of spawning grounds since such management actions alone may not be sufficient to protect at-risk species. In 2003 the Cayman Island Marine Conservation Board instituted an 8-year total fishing ban on all known Nassau grouper aggregation sites through the Restricted Marine Areas (Designation) Regulations legislation. Before these areas were protected, fishers took >90% of all harvested Nassau grouper from aggregations. Six Nassau grouper spawning aggregations have been documented in the Cayman Islands: the east end of Little Cayman, east end Cayman Brac, and east and south west ends of Grand Cayman, and the north east corner of the 12 Mile Bank to the west of Grand Cayman (Tucker et al. 1993) and one recently discovered at the west end of Little Cayman. Four of these aggregations apparently no longer exist and the fifth supports only a few fish. Only the west end site of Little Cayman, maintains annual aggregations of more than 1,000 grouper. In order to assess the effectiveness of the closures the Cayman Islands Department of the Environment (CIDOE) needs answers to the following questions: - 1) What proportion of Nassau grouper on the Cayman Islands use the aggregation sites receiving protection? - 2) Are there any as yet undiscovered (and thus unprotected) aggregation sites? - 3) How often do individual fish participate in aggregations? - 4) Where do aggregating individuals come from and where do they go afterward? - 5) Does demographic status (sex and size) influence participation in aggregations? In this paper we present preliminary findings from a study aimed at addressing these questions. We acoustically tagged Nassau grouper both on and off the Little Cayman west end aggregation site, and are subsequently monitoring the movements of the tagged fish over a two year period using an array of passive autonomous hydrophone receivers. By tagging fish on the aggregation we were able to determine where fish go after aggregating. The behavior of fish tagged at sites around Little Cayman prior to the aggregation will provide insight into the proportion of fish from the Island that attend aggregations, and the frequency of aggregation attendance by individual fishes as a function of demography. This information will allow the assessment of current and future impacts of the marine protected areas on Cayman's spawning aggregations; moreover, the study will define an aggregation's "sphere of influence" both geographically and demographically and will thus aid in the management of aggregations and populations generally. ## **METHODS** # Catching At the start of the January 2005 spawning season (25th – 27th January 2005) we caught 30 mature Nassau grouper (>40 cm TL; Sadovy and Colin 1995) at the west end Little Cayman aggregation site, using hand lines with 12/0 circle hooks, 0.2kg weights and a combination of fresh reef fish and squid as bait. Fish were caught at depths of approximately 30m and brought slowly to the surface to minimize barotrauma. We used circle hooks in order to maximize the likelihood of hooking fish in the corner of mouth. In June and August 2005 we caught 20 mature-sized Nassau grouper around Little Cayman Island using baited Antillean fish traps (Semmens *et al.* in press) and by SCUBA divers using mesh bags. To capture grouper, SCUBA divers chased them into a hole in the reef. In most instances the fish were sedated using 500ml of a 1:500 Quinaldine/seawater solution that was applied to the hole using a squirt bottle. In some cases the fish swam out into a net bag; in other cases the fish was removed by hand and placed in a net bag. ## **Tagging** Vemco coded transmitter tags were surgically implanted in 50 Nassau grouper using procedures modified from Adams *et al.* (1998). We measured total length (cm) and weight (kg) of all fish intended for tagging, and then placed the fish ventral side up in a 'V' shaped cradle, with fresh seawater irrigating their gills and a wet towel covering their head. We made a 25mm incision in the abdomen just posterior to the pelvic fins and offset from the mid-line and the acoustic tag was inserted into the gut cavity. Prior to surgery we soaked tags and surgical equipment in Betadine solution in an attempt to maintain the best aseptic technique possible under field conditions. Prior to use, tags and equipment were rinsed in sterile water. Surgical sutures (2-0, cutting needle, monofilament sutures) were used to close the wound following tag insertion, and anti-bacterial ointment was applied to the incision in order to minimize the likelihood of infection. Given the perceived high risk of predation during release, we opted not to anesthetize our subjects. During the spawning season we tagged 25 fish with a Vemco v16-4h coded transmitter tag and 5 with a Vemco v16-P depth-sensitive tag with a depth range of 0-204m. The 20 fish caught off the aggregation site were each tagged with a Vemco v16-4h coded transmitter tag. All fish were tagged with an external FLOY streamer tag, with color varying depending on where the fish was caught. The v16-4h tags have a battery life of approximately 900 days and ping (send coded acoustic information) once per 60-182 seconds. Pings are randomized within this time range in order to minimize signal collision when multiple tags are present. Blood samples were collected for hormone analysis in order to determine the sex of the tagged individuals. All animals were bled by caudal puncture into heparinized syringes. Blood was held on ice until the plasma was collected by centrifugation, and the plasma was frozen at -20C initially (~ 3 weeks), then at -80C until laboratory analyses were performed. Existing steroid radioimmunoassays (RIA's) for estradiol-17B (E₂) Testosterone (T) and 11-Ketotestosterone (11KT) were previously validated for use with grouper plasma (Heppell and Sullivan 2000, Heppell and Sullivan unpublished). Duplicate 20 μl aliquots of plasma were ether extracted and dried at 37° C under nitrogen gas, resuspended in phosphate buffered saline containing 1% gelatin (PG), and steroid levels were measured by RIA (Feist and Schreck 1996, Heppell and Sullivan 2000). Also, a small fin clip was collected and stored in 1% Sarcosyl Urea for future genetic analysis. All fish were released at depth at the site of their capture either by using a weighted hook recompression line (Bohnsack, 1996; Bartholomew *et al*, in press) or by hand-transporting the fish in a mesh bag to the bottom by a SCUBA diver. The recompression line consisted of an inverted barbless hook, with a 1.4 kg weight on a 1 m line tied to the hook eye, and a hand reel with a monofilament trip line tied to the bend of the hook. The fish was oriented head down, the inverted hook inserted through the top lip, and then gently lowered into the water while free spooling the trip line. The weight was allowed to rapidly carry the fish to a depth of approximately 10 meters at which time the trip line was quickly jerked upward to dislodge the hook from the upper lip. The fish were observed on SCUBA to swim easily to the bottom. ### Hydrophone Array We placed fifteen VEMCO VR2 single channel passive autonomous hydrophone datalogger receivers (VEMCO, 100 Osprey Drive, Shad Bay, Nova Scotia, Canada B3T 2C1) at approximately 2 km increments around Little Cayman prior to the onset of the January 2005 spawning season. The VR2 hydrophones were attached to ¼ inch polypropylene line approximately 8m below the surface using cable ties and moored at the edge of the wall. The line was anchored to a stainless steel pin embedded in the reef and buoyed by subsurface floatation buoys. The VR2 hydrophones have an advertised reception radius of 500-800m, a battery life of approximately 15 months, and can store 300,000 unique tag identifications. If an acoustically tagged fish comes within the reception range the VR2 will log the time, tag ID, and depth if the tag is depth-coded. Hydrophones are retrieved, downloaded, and redeployed every 3 months. Based on range tests, we determined the hydrophones to have a maximum reception radius of 300m in the field. ## Mobile Tracking In order to survey areas around Little Cayman outside of the reception range of the VR2 hydrophones, and in order to survey the islands of Cayman Brac and Grand Cayman, we surveyed near-shore habitat throughout the Cayman Islands using a boat-based hydrophone (Vemco VR100). The boat-based gear was used to search for acoustically tagged fish every 2 months around Little Cayman and every 6 months around Grand Cayman and Cayman Brac. The omni-directional hydrophone is towed 8m behind a boat at 5km/h at approximately 2m below the surface. If an acoustically tagged fish is detected the receiver logs the time, location (using a built-in Global Positioning System), tag ID, and if applicable, depth. #### Data Management Data from the VR2 and VR100 hydrophones are being stored in Microsoft Access and imported into spatially explicit ArcView Geographic Information System (GIS) for analysis. These data will be merged with data from existing CIDOE GIS layers including Little Cayman's shoreline, shelf edge, marine parks and known spawning areas. This, along with aerial photography, will show locations of tagged fish with respect to these features. In order to conduct analyses on the tag data, a Spatial Analyst extension developed by ESRI, and the Animal Movement Analysis extension, developed by the USGS (Hooge and Eichenlaub 2000) is being used. With these packages, density contours, kernel home range estimates, and electivity indices are being established and Monte Carlo site fidelity tests run. #### **RESULTS** ## Catching and Tagging In all, 50 Nassau grouper were acoustically tagged from Little Cayman. The average size these fish was 64 cm (range 44cm - 84cm). (Table 1 & 2). All fish survived tagging and were successfully released. Procedure times range from 2-10 minutes. #### January 2005 Fish were caught on hook and line during the January 2005 aggregation season. Because peak spawning occurs 5 nights after the full moon (Whaylen *et al* 2004) we stopped all efforts to catch fish 3 days after the full moon in an effort to minimize any adverse affects on spawning. Immediately following surgery tagged fish typically rested on the bottom. However, usually within 12 hrs tagged individuals acted unaffected. The VR100 mobile gear heard all the tagged fish on the aggregation site up to 7 days after tagging, until the aggregation dispersed. ## April and August 2005 We caught 20 Nassau grouper using Antillean fish traps and net bag SCUBA trapping techniques at sites around Little Cayman. After 10 days of trapping with Antillean fish traps in April 2005 we abandoned the method because mature (>50cm TL) Nassau grouper were being attacked by the isopod *Excorallana tricornis tricornis*. Isopods infested approximately half of the Nassau grouper caught with traps; two grouper died in traps presumably due to infestation (Semmens *et al* in press). While we tagged two Nassau grouper moderately infested with *E. tricornis tricornis* most were released. Trapping techniques using SCUBA and mesh bags were very labor and time intensive, resulting in an average of 2 Nassau grouper being acoustically tagged per day. #### The Hydrophone Array We downloaded all VR2 hydrophones in April and August 2005. These preliminary data show that the 30 fish we tagged on the aggregation returned to home reefs that were relatively evenly distributed around the entirety of Little Cayman. Eighteen of these fish returned to the aggregation for a second time in February. These 18 fish were among the largest of the acoustically tagged on the aggregation (Table 2; t test, p=0.017), suggesting that participating in more than one aggregation each year is common. #### Mobile Tracking We have circumnavigated Little Cayman using the VR100 Mobile gear 5 times (April, July, August, September, October 2005) in an effort to detect all tagged fish. While circumnavigating the island we followed a 'zig zag' course up to the reef and across the shelf to the drop off in order to maximize coverage of the shelf edge. We have detected 40 of the 50 acoustically tagged fish with the VR100 mobile gear. The 10 fish not heard include the 2 that were infested by *E. tricornis tricornis* (Semmens *et al* in press), and 8 that were last heard on the VR2 array shortly after tagging (Table 3 and Figure 1). #### **DISCUSSION** The set-up phase of this project is now complete and data collecting will dominate the rest of the field phase. We anticipate the battery life of the acoustic tags will last for 3 spawning seasons. Despite the relatively poor reception range of the VR2 hydrophones, Little Cayman's short coastal shelf and precipitous shelf drop-off provide a natural 'corridor' that acts to funnel migrating grouper in close proximity to the VR2 hydrophones. As such, with rare exception all tagged fish were heard by each hydrophone they passed on their migration routes. The VR100 has proved invaluable for detecting those acoustically tagged fish residing outside the range of the VR2 hydrophones. According to preliminary VR2 data none of the 10 missing fish disappeared after heading east toward Cayman Brac, and a recent mobile tracking survey around the western end of Cayman Brac did not detect any tags. A more thorough survey of Cayman Brac as well as Grand Cayman is scheduled for 2006. The extent to which local populations of Nassau grouper use aggregation sites bears directly on the success and effectiveness of protections placed on these sites. If, for instance, virtually all Nassau grouper from Little Cayman aggregate predictably at the west end aggregation site, then enforced fishing prohibitions at the site will be highly effective at limiting over fishing. If on the other hand, only a small portion of the total grouper population attends the aggregations each year, or if much of the local population of grouper attends aggregations at currently unknown locations, then the protections on the aggregation site may be far less effective at reducing fishing impacts than expected. The products of this study will allow the CIDOE to directly assess the efficacy of existing reserves, and will provide guidance for additional protected areas in the event that additional aggregation sites are found. The recently legislated 8-year ban on fishing Cayman aggregations was enacted with the understanding that any extension to this ban would be contingent on a comprehensive assessment of the status of the Cayman Island's Nassau grouper spawning population. By describing the spatial ecology of Nassau grouper and, more specifically, aggregation site usage as a function of demography, this study will provide a crucial component of this assessment. It is our experience the popular notions of the fishing community (in this case, abyssal migrations, regular shifting of SPAGS, and as yet undiscovered SPAGS) and the current lack of scientific evidence proving or disproving them, can lead to lack of political support in implementing protective legislation. This research should help to dispel (or prove) such notions. To this end, findings will be presented to fishers on each of the islands in order to disseminate information and elicit feedback from a primary resource user group. #### **REFERENCES** Adams, N. S., D.W. Rondorf., S.D. Evans and J.E. Kelly. 1998. Effects of surgically and gastrically implanted radio transmitters on growth and feeding behavior of juvenile Chinook salmon. *Trans. Am. Fish. Soc.* 127: 128-136. Bartholomew, Aaron and J.A. Bohnsack. (in press). A review of catch-and-release angling mortality with implications for no-take reserves. Reviews in Fish Biology and Fisheries. Beets, J. and M.A. Hixon. 1994. Distribution, persistence, and growth of grouper (Pisces: Serranidae) on artificial and natural patch reefs in the Virgin Islands *Bull. Mar. Sci.* **55**, 470-483. Bohnsack, J.A. 1996. Alternative method for returning fish to sea. Guest Column. Page 3 - South Atlantic Update. South Atlantic Fishery Management Council. Sept 1996. Bolden, S.K. 2000. Long-distance movement of a Nassau grouper (Epinephelus striatus) to a spawning aggregation in the central Bahamas. *Fish. Bull.* **98**(3) 642-645. Domeier, M.L. and P.L. Colin. 1997. Tropical reef fish spawning aggregations: defined and reviewed. *Bull. Mar. Sci.* **60**: 698-726. Feist, G., and C.B. Schreck. 1996. Brain-Pituitary-Gonadal axis during early development and sexual differentiation in the rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocrinol. 102:394-409. Heppell, SA, and CV Sullivan. 2000. Identification of gender and reproductive maturity in the absence of gonads: muscle tissue levels of sex steroids and vitellogenin in gag (*Mycteroperca microlepis*). Can. J. Fish. Aquatic Sci. :148-159 .Hooge P.N. and B. Eichenlaub 1997. Animal movement extension to Arcview. Ver. 1.1. Alaska Biological Science Center, U.S. Geological Survey, Anchorage, AK IUCN 2002. 2002 International Union for Conservation of Nature Red List of Threatened Species. [on-line] www.redlist.org. Downloaded on 1 January 2004. Kramer, D.L. and M.R. Chapman. 1999. Implications of fish home-range size and relocation for marine reserve function. Envir. Biol. Fish. 55: 65-79. Sadovy, Y., and P.L. Colin. 1995. Sexual development and sexuality in the Nassau grouper, Epinephelus striatus (Pisces: Serranidae). *J. Fish. Biol.* **46**: 961-976 Sadovy, Y. and A.M. Eklund. 1999. Synopsis of biological information on Epinephelus striatus (Bloch, 1972), the Nassau grouper, and E. itajara (Lichtenstein, 1822) the jewfish. U. S., Dep. Commerce, NOAATech. Rep. NMFS 146, and FAO Fisheries Synopsis 157, 65pp. Sala E., R. Starr, and E. Ballesteros. 2001. Rapid decline of Nassau grouper spawning aggregations in Belize. Fishery management and conservation needs. *Fisheries* **26**(10): 23-30. Semmens, B. X., Luke, K.E., Bush, P.G, McCoy, C.M. R., Johnson, B.C. In Press. Isopod infestation of post-spawning Nassau grouper around Little Cayman Island. Tucker, J.W., P.G. Bush & S.T. Slaybaugh. 1993. Reproductive patterns of Cayman Islands Nassau grouper (Epinephelus striatus) populations. *Bull. Mar. Sci.* **52**: 961-969. Whaylen, L., C.V. Pattengill-Semmens, B.X. Semmens, P.G. Bush, and M.R. Boardman. In press. Observations of a Nassau Grouper (Epinephelus striatus) Spawning Aggregation Site In Little Cayman, Including Multi-Species Spawning Information. *Envir. Biol. Fish.* The authors thank B. Luckhurst, T. Trott and P. Hillenbrand for logistical support. Special thanks to Grant Feist (OSU) for running the hormone analyses. Funding for the project was provided in part by the Department of Commerce (DOC), National Oceanographic and Atmospheric Administration (NOAA) Coral Reef Conservation Fund [award# NA04NOS4630287] and the PADI Project AWARE Foundation. B. Semmens was supported by a Science To Achieve Results (STAR) United States Environmental Protection Agency (EPA) graduate research fellowship. The statements, findings, and conclusions in this report are those of the authors and do not necessarily reflect the views of DOC, NOAA, or EPA. Special thanks to the Reef Environmental Education Foundation (REEF) and REEF volunteers for facilitating this research. | Date | Catch and Release | Size | Weight | Floy tag side | Acoustic | |-----------|----------------------|------|--------|---------------|----------| | tagged | Location | cm | kg | tagged | tag ID | | 27-Jan-05 | West end aggregation | 64 | 4.95 | 00026 R | 40 | | 27-Jan-05 | West end aggregation | 70 | 6.1 | 00021 R | 41 | | | West end aggregation | 83 | 12.5 | 00016 R | 42 | | 26-Jan-05 | West end aggregation | 62 | 5 | 00011 R | 43 | | 26-Jan-05 | West end aggregation | 64 | 4.9 | 00013 R | 44 | | 26-Jan-05 | West end aggregation | 64.5 | 4.7 | 00012 R | 3900 | | 27-Jan-05 | West end aggregation | 65 | 4.35 | 00028 R | 3901 | | 27-Jan-05 | West end aggregation | 71 | 7.15 | 00025 R | 3902 | | 27-Jan-05 | West end aggregation | 64 | 4.55 | 00031 R | 3903 | | 3-Aug-05 | South west end | 66.5 | 5 | yellow01224R | 3904 | | 1-Aug-05 | South east end | 63 | 5 | Green01330R | 3905 | | | West end aggregation | 68 | 5.45 | 00034 R | 3906 | | 26-Jan-05 | West end aggregation | 64.5 | 4.5 | 00006 R | 3907 | | 26-Jan-05 | West end aggregation | 52 | 2.2 | 00017 R | 3908 | | 27-Jan-05 | West end aggregation | 83 | 12.36 | 00030 R | 3909 | | 27-Jan-05 | West end aggregation | 72 | 6.9 | 00029 R | 3910 | | 27-Jan-05 | West end aggregation | 65 | 5.35 | 00024 R | 3911 | | 27-Jan-05 | West end aggregation | 63.5 | 4.6 | 00022 R | 3912 | | 27-Jan-05 | West end aggregation | 63 | 4.32 | 00019 R | 3913 | | 26-Jan-05 | West end aggregation | 64 | 4.6 | 00005 R | 3914 | | | West end aggregation | 63 | 4.5 | 00020 R | 3915 | | 27-Jan-05 | West end aggregation | 72 | 7.4 | 00023 R | 3916 | | | West end aggregation | 84 | 11.4 | 00018 R | 3917 | | | West end aggregation | 77 | 9.8 | 00007 ? | 3918 | | | West end aggregation | 56.5 | 2.65 | 00009 ? | 3919 | | Date | Catch and Release | Size | Weight | Floy tag side | Acoustic | |-----------|--------------------------|------|--------|---------------|----------| | tagged | Location | cm | kg | tagged | tag ID | | 26-Jan-05 | West end aggregation | 67 | | 00014 R | 3920 | | 27-Jan-05 | West end aggregation | 81 | 11.75 | 00035 R | 3921 | | 27-Jan-05 | West end aggregation | 75.5 | 8.7 | 00036 R | 3922 | | 27-Jan-05 | West end aggregation | 63 | 4 | 00027 R | 3923 | | 26-Jan-05 | West end aggregation | 74.5 | 8.7 | 00015 R | 3924 | | 10-Apr-05 | | 44.5 | 3 | Red01137R | 3925 | | 20-Apr-05 | Rec 15 | 63 | 4.7 | Yellow01218R | 3926 | | 18-Apr-05 | South – west Owen Island | 67.5 | 6.1 | Red01128R | 3927 | | 11-Apr-05 | Rec 10 | 61 | 4.5 | Blue01044R | 3928 | | 5-Aug-05 | Bloody Bay Wall | 58.5 | 4 | Orange01419R | 3929 | | 12-Apr-05 | | 55 | 2.75 | Green01385R | 3930 | | 1-Aug-05 | South east end | 52 | 2.5 | Blue01039R | 3931 | | 3-Aug-05 | North west end | 57 | 3.5 | Orange01443R | 3932 | | 18-Apr-05 | South - east Owen Island | 52 | 2.25 | Red01120R | 3933 | | 2-Aug-05 | North east end | 54 | 2.5 | Blue01086R | 3934 | | 3-Aug-05 | West end | 74 | 7.5 | yellow01277R | 3935 | | 16-Apr-05 | South west Owen Island | 75 | 9.5 | Red01113R | 3936 | | 30-Jul-05 | Snipe Point | 57.7 | 4 | Green01333R | 3937 | | 30-Jul-05 | West Snipe Point | 63 | 5.5 | Green01340R | 3938 | | 10-Apr-05 | | 53 | 2.4 | Red01103R | 3939 | | 1-Aug-05 | East of Bloody Bay | 64 | 4.5 | Green01348R | 3940 | | | Bloody Bay | 59 | 3.5 | Orange01478R | 3941 | | 31-Jul-05 | Off Mary's Bay | 60 | | Green01337R | 3942 | | 27-Jan-05 | West end aggregation | 64 | 4.6 | 00032 R | 3943 | | 27-Jan-05 | West end aggregation | 63.5 | 4.2 | 00033 R | 3944 | Table 1: Acoustically tagged fish data | | n | Average
Size cm | |---|----|--------------------| | Acoustically tagged from January spawning aggregation | 30 | 68.11 | | Acoustically tagged around Little Cayman | 20 | 59.98 | | Acoustically tagged fish returned for February spawning aggregation | 18 | 71.22 | Table 2: The number and average size of tagged Nassau groupers | Acoustic | | | | When | Size | |----------|-----------|-----------------|------------|--------|------| | tag ID | Date | Location | Hydrophone | tagged | cm | | 3901 | 5-Feb-05 | REC1 | VR2 | Jan | 65 | | 3907 | 30-Mar-05 | REC1 | VR2 | Jan | 64.5 | | 3914 | 1-Apr-05 | REC5 | VR2 | Jan | 64 | | 3939 | 11-Apr-05 | REC4 | VR2 | April | 53 | | 3930 | 17-Apr-05 | REC8 | VR2 | April | 55 | | 3923 | 5-May-05 | REC5 | VR2 | Jan | 63 | | 3922 | 4-Jul-05 | REC9 | VR2 | Jan | 75.5 | | 3928 | 6-Aug-05 | REC10 | VR100 | April | 61 | | 3902 | 11-Sep-05 | REC5 | VR2 | Jan | 71 | | 3935 | 12-Sep-05 | NW of REC2 | VR100 | Aug | 74 | | 3915 | 14-Sep-05 | E of Jacksons | VR100 | Jan | 63 | | 3942 | 14-Sep-05 | W Mary's Bay | VR100 | July | 60 | | 3919 | 15-Sep-05 | NW of Snipe Pt. | VR100 | Jan | 56.5 | | 3937 | 15-Sep-05 | NE of Snipe Pt. | VR100 | July | 57.7 | | 3903 | 10-Oct-05 | EE South | VR100 | Jan | 64 | | 3905 | 10-Oct-05 | EE South | VR100 | Aug | 63 | | 3909 | 10-Oct-05 | SE of REC9 | VR100 | Jan | 83 | | 3931 | 10-Oct-05 | EE South | VR100 | Aug | 52 | | 3934 | 10-Oct-05 | SE of REC9 | VR100 | Aug | 54 | | 3938 | 10-Oct-05 | NW of Snipe Pt. | VR100 | July | 63 | | 41 | 11-Oct-05 | N of REC5 | VR100 | Jan | 70 | | 3911 | 11-Oct-05 | SE of REC9 | VR100 | Jan | 65 | | 3916 | 11-Oct-05 | W of REC8 | VR100 | Jan | 72 | | 3918 | 11-Oct-05 | NW of REC10 | VR100 | Jan | 77 | | 3924 | 11-Oct-05 | NW of REC10 | VR100 | April | 74.5 | | Acoustic | | | | When | Size | |----------|-----------|-----------------|------------|--------|------| | tag ID | Date | Location | Hydrophone | tagged | cm | | 3929 | 11-Oct-05 | SW of REC5 | VR100 | Aug | 58.5 | | 3932 | 11-Oct-05 | W McCoys | VR100 | Aug | 57 | | 3940 | 11-Oct-05 | E of Jacksons | VR100 | Aug | 64 | | 3943 | 11-Oct-05 | REC4 | VR100 | Jan | 64 | | 40 | 12-Oct-05 | W Owen Island | VR100 | Jan | 64 | | 43 | 12-Oct-05 | W of Flats | VR100 | Jan | 62 | | 3900 | 12-Oct-05 | E Owen IS | VR100 | Jan | 64.5 | | 3904 | 12-Oct-05 | E of REC2 | VR100 | Aug | 66.5 | | 3906 | 12-Oct-05 | W of Flats | VR100 | Jan | 68 | | 3908 | 12-Oct-05 | Charles' Bite | VR100 | Jan | 52 | | 3910 | 12-Oct-05 | Charles' Bite | VR100 | Jan | 72 | | 3912 | 12-Oct-05 | REC5 | VR2 | Jan | 63.5 | | 3913 | 12-Oct-05 | W of Flats | VR100 | Jan | 63 | | 3920 | 12-Oct-05 | SSW of REC3 | VR100 | Jan | 67 | | 3921 | 12-Oct-05 | REC12 | VR100 | Jan | 81 | | 3925 | 12-Oct-05 | REC12 | VR100 | Jan | 44.5 | | 3926 | 12-Oct-05 | E of REC15 | VR100 | April | 63 | | 3927 | 12-Oct-05 | REC14 | VR100 | April | 67.5 | | 3933 | 12-Oct-05 | Off Rocky Pt. | VR100 | April | 52 | | 3936 | 12-Oct-05 | Off Owen Island | VR100 | April | 75 | | 3944 | 12-Oct-05 | W of Diggary's | VR100 | Jan | 63.5 | | 44 | 13-Oct-05 | REC5 | VR2 | Jan | 64 | | 42 | 14-Oct-05 | REC5 | VR2 | Jan | 83 | | 3917 | 14-Oct-05 | REC5 | VR2 | Jan | 84 | | 3941 | 14-Oct-05 | REC5 | VR2 | Aug | 59 | Table 2: Where we last heard the fish as of October 2005