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ABSTRACT
We describe several models to convert order-of-

magnitude count data to a numeric mean and demon-
strate that with a sufficient number of surveys, estimates 
of the mean with a reasonably small confidence inter-
val can be attained. The method is applied to fish sur-
vey data collected as part of the Reef Environmental 
Education Foundation (REEF) Volunteer Survey Proj-
ect, a citizen science program that has accumulated a 
database of over 172,000 surveys by recreational divers 
using the Roving Diver Technique (RDT). We com-
pare three models to convert RDT order-of-magnitude 
counts to expected arithmetic means. For each model, 
parameter estimates and associated confidence inter-
vals were derived from 292 RDT surveys where precise 
counts were also made. Models were compared using 
the small sample Akaike Information Criteria (AICc). 
The best-fitting model uses disaggregated bin-count 
data and considers the relative proportion of counts in 
adjacent bins.

INTRODUCTION
There is growing interest by scientists, resource 

managers, and decision makers in the potential role of 
data collected by citizen scientists as another source 
for tracking fish populations. Such data sets may be 
applied to stock assessments, the evaluation of Califor-
nia’s network of Marine Protected Areas (MPAs), and 
how marine fishes respond to changing ocean con-
ditions. Moreover, the species of nearshore rocky reef 
fishes addressed in this study play an important role in 
commercial and recreational fisheries, as well as dive 
tourism. This paper proposes a method to quantitatively 
analyze data like that generated by the Reef Environ-
mental Education Foundation (REEF) Fish Survey 
Project, a citizen science data collection program con-
ducted by recreational divers.

Because biological populations tend to grow and 
decline exponentially, population densities often vary 
across both time and space by orders of magnitude (May 
1975; Engen and Lande 1996). One of the most efficient 
methods of surveying such populations is with order-
of-magnitude counting methods. REEF developed the 

Roving Diver Technique (RDT) to enlist SCUBA divers 
to conduct fish surveys (Semmens et al. 2000; Schmitt 
et al. 2002). The surveyors roam across a dive site and 
record order-of-magnitude counts of fish species they 
observe and can positively identify, with the follow-
ing counting bins: Single = 1, Few = 2–10, Many = 
11–100, and Abundant >100 (hereafter termed SFMA 
data). As of July 2013, over 172,000 surveys have been 
made worldwide, with the results made publicly available 
on REEF’s website, www.REEF.org. In the Monterey 
Peninsula area of the California coast, 3,157 surveys were 
conducted over fifteen years, from 1997 through 2011. 
These data, collected by volunteer citizen science divers, 
have great potential to augment and strengthen regional 
scientific, conservation, and management efforts (Wolfe 
and Pattengill 2013; Holt et al. 2013). This paper iden-
tifies computational techniques to convert REEF cat-
egorical data to arithmetic means, thereby enhancing its 
statistical usefulness.

Our results presented here show that, with a sufficient 
number of surveys, order-of-magnitude count data can 
be converted to numeric means with reasonably small 
confidence intervals. Because RDT dives have mean 
durations covering mean distances, the average num-
ber of fish seen per dive can be used to approximate 
relative fish density. We base our analysis on 292 RDT 
surveys where exact counts were made instead of order-
of-magnitude SFMA counts. The exact count data were 
converted to SFMA data for 36 species, and then three 
different models were compared to determine which 
most accurately converts SFMA data back to arithmetic 
means. Akaike Information Criterion for small samples 
(AICc) was used to determine the model that gave the 
best, most parsimonious fit. While all three estimation 
models were compared using the same SFMA data, the 
first model aggregated the SFMA data into a single log-
density score DEN, while the second and third models 
were based on the disaggregated SFMA bin data. The lat-
ter two models proved to be more precise, with signifi-
cantly tighter confidence intervals around the estimated 
mean. We then quantified the confidence interval asso-
ciated with the best estimation method and examined 
other sources of uncertainty.
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a Few (2–10), Many (11–100), or Abundant (over 100).
Verify Underlying Log-Normal Distribution:  To for-

mulate reasonable estimation methodologies, the exact 
count data were examined to determine the underlying 
distribution of fish sightings. As expected (Limpert et 
al. 2001), sightings generally followed a log-normal dis-
tribution (figs. 1 and 2). The numeric mean x̄ of a log-
normal distribution with mean μ and standard deviation 
σ is:

	 x̄ = e(µ + σ2/2)	 (1)

To determine closeness of fit of species’ sightings to 
a perfect log-normal distribution, the ratios of expected 
to observed numeric means were plotted against the log-
transformed mean abundances for the 36 species. The 
log-normal distribution assumption fit well for most spe-
cies, but tended to overestimate the numeric mean for 
abundant schooling fish species (fig. 3). 

METHODS
Exact Count Database:  To correlate SFMA data 

with precise counts of fish seen, exact counts of all 
observed fish species were recorded while concurrently 
conducting a REEF RDT survey. 292 such dives were 
made by lead author JW between 2002 and 2012 on 
nearshore reefs of south Monterey Bay and Carmel Bay, 
the area identified by the REEF geozone code prefix 
4114. Most dives were from shore at traditionally recog-
nized dive sites extending from Del Monte Beach and 
the Breakwater in south Monterey Bay to Point Lobos 
State Marine Reserve in south Carmel Bay. Thirty-six 
fish species were observed on over 8% of the dives, and 
these formed the basis of the exact count data set used 
to derive methods of converting SFMA data to arith-
metic means (table 1). Observed numeric means were 
calculated for each species. The data were also catego-
rized by the lower resolution SFMA log10 counting bins, 
enumerating how many dives a single fish was seen, or 

TABLE 1
SFMA counts and numeric mean for 36 fish species based on 292 exact-count surveys. Values under  

columns S, F, M, and A are the number of dives for which that species was recorded in that log10 counting bin.

			   1	 2–10	 11–100	 101+		   
	 Species Name		  S	 F	 M	 A	 Total	 Obs. Mean 

  1	 Striped Seaperch	 Embiotoca lateralis	 6	 90	 167	 1	 264	 17.1
  2	 Blue Rockfish	 Sebastes mystinus  	 5	 41	 121	 91	 258	 114.6
  3	 Kelp Rockfish	 Sebastes atrovirens  	 12	 133	 106	 0	 251	 12.7
  4	 Kelp Greenling	 Hexagrammos decagrammus	 56	 171	 4	 0	 231	 3.3
  5	 Pile Perch	 Damalichthys vacca	 30	 148	 41	 1	 220	 8.0
  6	 Painted Greenling	 Oxylebius pictus	 36	 140	 31	 0	 207	 6.3
  7	 Black Perch	 Embiotoca jacksoni	 40	 133	 20	 0	 193	 4.6
  8	 Black & Yellow Rockfish	 Sebastes chrysomelas	 47	 138	 6	 0	 191	 3.4
  9	 Blackeye Goby	 Coryphopterus nicholsi	 28	 116	 24	 1	 169	 6.6
10	 Black Rockfish	 Sebastes melanops  	 41	 107	 21	 0	 169	 5.6
11	 Senorita	 Oxyjulis californica	 13	 29	 89	 35	 166	 67.1
12	 Lingcod	 Ophiodon elongatus	 72	 83	 0	 0	 155	 2.0
13	 YOY Rockfish	 Sebastes spp. (<5 cm) 	 12	 30	 62	 49	 153	 125.7
14	 Tubesnout	 Aulorhychus flavidus	 19	 22	 50	 52	 143	 143.4
15	 Olive Rockfish	 Sebastes serranoides   	 41	 84	 13	 0	 138	 4.1
16	 Gopher Rockfish	 Sebastes carnatus	 47	 82	 3	 0	 132	 3.2
17	 Cabezon	 Scorpaenichthys marmoratus	 84	 43	 0	 0	 127	 1.6
18	 Kelp Perch	 Brachyistius frenatus	 36	 54	 26	 2	 118	 10.3
19	 Rubberlip Surfperch	 Rhacochilus toxotes	 26	 63	 16	 0	 105	 5.6
20	 Reef Surfperch	 Micrometrus aurora	 4	 25	 34	 0	 63	 15.8
21	 Rainbow Surfperch	 Hypsurus caryi	 16	 25	 18	 0	 59	 10.4
22	 Copper Rockfish	 Sebastes caurinus  	 25	 24	 2	 0	 51	 2.5
23	 Snubnose Sculpin	 Orthonopias triacis	 31	 20	 0	 0	 51	 1.7
24	 Speckled Sanddab	 Citharichthys stigmaeus	 12	 32	 5	 0	 49	 4.0
25	 Yellowtail Rockfish	 Sebastes flavidus  	 18	 25	 4	 0	 47	 3.4
26	 Gibbonsia Kelpfish	 Gibbonsia spp.	 39	 6	 0	 0	 45	 1.2
27	 Treefish	 Sebastes serriceps   	 28	 10	 0	 0	 38	 1.4
28	 Monkeyface Prickleback Eel	 Cebidichthys violaceus	 27	 10	 0	 0	 37	 1.4
29	 Vermillion Rockfish	 Sebastes miniatus  	 32	 4	 0	 0	 36	 1.1
30	 Opaleye	 Girella nigricans	 14	 19	 2	 0	 35	 2.8
31	 California Sheephead	 Semicossyphus pulcher	 14	 21	 0	 0	 35	 2.2
32	 Blacksmith	 Chromis punctipinnis	 10	 11	 4	 8	 33	 68.0
33	 Scalyhead Sculpin	 Artedius harringtoni	 24	 9	 0	 0	 33	 1.4
34	 Grass Rockfish	 Sebastes rastrelliger   	 26	 6	 0	 0	 32	 1.3
35	 Kelp/Calico Bass	 Paralabrax clathratus	 22	 6	 0	 0	 28	 1.3
36	 Coralline Sculpin	 Artedius corallinus	 18	 5	 0	 0	 23	 1.3

Fish species shown in Tables 1 and 2 are listed in descending order of total sightings over 292 surveys.
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imize RSS were determined using the Solver Add-On 
Tool of Microsoft Excel.

Aggregate Log-Density Score, DEN:  The REEF 
Web site reports summaries for groups of surveys for 
any requested period of time and geographic area within 
the REEF database. Counts for each species are summa-
rized by sighting frequency (SF) and log-density score 
(DEN). The value DEN is a single number that aggre-
gates nonzero sightings into a log average:

	 S + 2F + 3M + 4A
	 DEN =	 	 (3)
	 S + F + M + A

where:
S =	� number of dives reporting a Single   

individual of a given species
F =	� number of dives reporting a Few (2–10)  

individuals of that species
M =	�number of dives reporting Many (11–100) 

individuals of that species
A =	� number of dives reporting Abundant (over 100) 

individuals of that species

Because fish counts fit log-normal distributions more 
closely than normal distributions, ∆ used in the least 
squares regression below were based on proportional 
rather than arithmetic differences. Likewise, confidence 
intervals were calculated as “times/divide” x/ propor-
tions rather than “plus/minus” +/– arithmetic intervals 
(Limpert et al. 2001). A times/divide factor of x/30% 
(shorthand for x1.30, /1.30) corresponds to plus/minus 
factors of +30%, –23%.

Application of Least Squares Regression:  Three esti-
mation models for converting SFMA data were exam-
ined. Optimal parameters for each model were deduced 
using least squares regression applied to all 36 fish spe-
cies by calculating the proportional difference, ∆, of the 
ratio of the expected to observed numeric mean for 
each species as:

	 ∆ = ln(ExpectedMean/ObservedMean)	 (2)

For each species, ∆ was squared, and the residual sum 
of the squares (RSS) was calculated by summing ∆2 for 
all 36 species, giving each species equal weight in the 
regression. For each model, optimal parameters to min-
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distribution (solid line) drawn on top.  Figures 1b and 2b (lower graphs) are histograms of the same surveys plotted against natural log counting bins of fish seen 
per dive.
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is reasonable to expect the average number of individu-
als seen in the Few category to be at the lower end of 
the range of 2 to 10, perhaps between 2 and 3 (fig. 4a). 
On the other hand, for 20 dives with a distribution of 
S = 1, F = 3, M = 12, A = 4, one would expect a higher 
average number of individuals seen in the Few category, 
closer to the upper end of the range 2 to 10 (fig. 4b).

In the hypothetical distributions described, the aver-
age number of observed individuals in the “Few” cate-
gory shifts from 2.4 to 8.4 as the expected mean from all 
categories increases. An “Average of Few” variable based 
on the proportion of adjacent count categories can be 
formulated, as well as similar variables for the Many and 
Abundant categories. These variables, AvgF, AvgM and 
AvgA, are bound by the limits that define their ranges, 
and are formulated as follows:

		  2S + f fF + 10M
	 AvgF =	 	
		  S + F + M 

		  11F + mmM + 100A
	 AvgM =	 	 (6)
		  F + M + A 

		  amM + aaA	 AvgA =	 	
		  M + A 

f f 	 =	 contribution of Few component to AvgF
mm	=	 contribution of Many component to AvgM
am 	=	 contribution of Many component to AvgA
aa 	=	 contribution of Abundant component to AvgA
		
The variables AvgF, AvgM and AvgA, multiplied 

by their corresponding category counts F, M and A, 
can then be summed and divided by the total nonzero 
counts to give the expected average sightings per dive:

		  S+F •AvgF+M •AvgM+A •AvgA
	 ExpectedMean3 =	 	
			   S + F + M + A
			   (7)

Incorporation of Zero Counts
In all the models described above, the expected mean 

represents the mean for nonzero surveys. This nonzero 
mean is multiplied by the sighting frequency (fraction of 
nonzero sightings) to calculate an overall average num-
ber of fish of a given species seen per dive.

ExpectedMean (AllSurveys) =	 (8)
SightingFrequency • ExpectedMean(NonZeroSurveys)

Akaike Information Criterion (AICc)
To determine best fit while avoiding the pitfalls of 

either underfitting or overfitting the data, models were 

Model Descriptions
Models were formulated to predict expected mean 

from SFMA data. The optimized parameters for these 
models are intended to apply to all fish species studied, 
based on best overall fit to 36 fish species reported in 
the 292 exact count dives. The first model was based on 
the aggregate log-density score DEN, while the second 
and third models were based on disaggregated SFMA 
bin counts.

 
Model 1.  The first model used an exponentiation 

formulation:

ExpectedMean1 = A(DEN–1)B	 (4)

where �A = a base coefficient and  
B = an exponent coefficient.

Model 2.  A second model can be devised where a 
single theoretical average value is sought for each count 
category, with no consideration of the relative propor-
tion of adjacent count categories. This leads to a simple 
formulation:

		  S + f2F + m2M + a2AExpectedMean2 =	 	 (5)
		  S + F + M + A

The parameters f2, m2 and a2 can be regarded as the 
average number of fish that are seen on dives where 
2–10, 11–100, and over 100 fish are seen, respectively.

Model 3.  With disaggregated SFMA data, the pro-
portion of sightings in an adjacent category may provide 
information on the probable average value for the cate-
gory in question. For instance, for 20 dives with a distri-
bution of 16 Single counts, 4 Few counts, and zero Many 
and Abundant counts (S = 16, F = 4, M = 0, A = 0), it 
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Figure 3.  The log-normal distribution’s predicted / observed numeric mean 
ratio plotted as a function of the logn-transformed observed mean counts for 
a given species; each point represents one of the 36 species observed. Given 
a perfect log-normal distribution with mean µ and standard deviation σ, pre-
dicted numeric mean = exp(µ + σ2/2). The graph suggests that counts of most 
species closely follow a log-normal distribution, but stray from perfectly log-
normal for the most abundant species, where a perfect log-normal distribution 
predicts higher counts than are actually observed.
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also avoids the issues associated with the alternative of 
deducing confidence intervals from log-normal distribu-
tion properties (Singh et al. 1997; Zhou and Gao 1997; 
Parkin et al. 1990).

The nonzero count data for the eleven most fre-
quently seen species were broken into small segments. 
Fifty different segments, each n sightings long, were 
taken sequentially from a given species’ string of non-
zero sightings. For each segment, the prediction method 
(model 3) was applied and the resulting expected mean 
was compared to the observed mean. Each segment is so 
small that for all practical purposes it is statistically inde-
pendent of the larger data set from which the optimal 
estimate coefficients were determined. This process was 
repeated fifty times, and the standard error was deter-
mined for this species for a given n sightings. The process 
was repeated for n = 3 to 150 sightings, so that a given 
confidence interval could be plotted against the number 
of nonzero sightings for each species. 

To use a specific example, to determine the uncer-
tainty associated with n = 4 surveys, the first four counts 
for 258 blue rockfish nonzero sightings were 35, 4, 6, 
255. This was converted to order of magnitude counts: 
M, F, F, A and represents the first n = 4 segment of fifty 
segments. This segment’s SFMA count is: S = 0, F = 2, 
M = 1, A = 1. The observed mean for the first segment 
was calculated (75.0) and Model 3 was applied to cal-
culate expected mean (81.3), as well as the expected/
observed ratio (81.3/75.0 = 1.084). This process was 
repeated for the next 49 segments of n = 4 length (using 
200 of the 258 blue rockfish sightings), and the standard 
error was calculated from the fifty ratios of expected to 
observed means. For larger n values where 50n exceeds 
the total number of nonzero sightings for a species, the 
segments wrapped around to the beginning of the string. 

The standard errors for the eleven species clustered 
into two main groups, “typical” species with less than 

compared using the small sample Akaike Information 
Criterion (AICc; Burnham and Anderson 2002), given 
by:

		  2k(k + 1)
AICc = –n • ln(RSS/n) + 2k +	 	 (9)
		  n – k – 1 	

k = number of estimable parameters in the model
n = number of samples

For least squares regression, k is the number of param-
eters being fitted in the model, plus one. The added one 
represents RSS, the target parameter to minimize (Burn-
ham and Anderson 2002). The sample size is n = 36, 
the number of fish species that each model was applied 
to and checked against. The model with the minimum 
AICc score has the best fit of all the models considered. 
Where AICc scores are very close (within 2 points), AIC 
relative weights can be applied.

Confidence Intervals 
Confidence intervals around the expected numeric 

mean were calculated and combined to capture two sep-
arate sources of uncertainty: (1) SFMA translational error, 
and (2) observational variance. Both confidence inter-
vals narrowed with increasing number of dive surveys.

Translational Imprecision Confidence Interval:  The 
data upon which the estimate coefficients are based are 
not truly statistically independent of the data used to 
calculate the observed mean fish seen per survey, and 
therefore the regression method described above may 
underestimate the coefficient of variation. Furthermore, 
the associated coefficient of variation and confidence 
interval reflects an amalgamation of 36 species with 
behaviors that range from solitary to schooling. A boot-
strap procedure was used to address issues of statistical 
independence, as well as determine estimate error as a 
function of nonzero sightings. This bootstrap procedure 

16

4

0 0
0

5

10

15

20

S ( 1 ) F ( 2.4 ) M A
expected mean = 1.3
[ 16(1)+4(2.4) ] / 20

nu
m
be
r 
of
 s
ig
ht
in
gs
 p
er
 

co
un
t c
at
eg
or
y

1
3

12

4

0

5

10

15

20

S ( 1 ) F ( 8.4 ) M ( 44.1 ) A ( 237)
expected mean = 75.2

[ 1(1)+3(8.4)+12(44.1)+4(237) ] / 20

nu
m
be
r 
of
 s
ig
ht
in
gs
 p
er
 

co
un
t c
at
eg
or
y
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Dali’s Wall), while conducting a standard REEF sur-
vey for all other species. Six coefficients of variation 
were calculated (2 sites x 3 species), weighted by rel-
ative proportion of nonzero sightings, and pooled by 
SRSS (described below in “orthogonal combination 
of variability”). 

2. 	Variability from the same diver surveying the same site at 
different times of the year under differing conditions. To 
quantify the variability from the same diver survey-
ing the same site at different times of the year under 
differing conditions, the exact count data were mined 
for years when the same site was surveyed multiple 
times. Six dives in 2004 and 7 dives in 2009 were 
conducted at the same site in Carmel Bay (Butter-
fly House shore dive). Coefficients of variation were 
calculated for the same three common fish species 
as used in the variability in divers analysis. This cal-
culated coefficient of variation was multiplied by a 
reduction factor to remove the effects of taking dif-
ferent routes across the site (quantified as described 
previously), and from variation caused by underlying 
year-to-year population trends.

3. 	Variability from differing mix of dive sites. The mix of 
dive sites in an area surveyed by REEF divers varies 
from year to year. This variability can be controlled for 
in three ways. First, the sites included for study can be 
pared down to a consistent year-to-year data set. Sec-
ond, the mix of dive sites can instead be normalized 
for one or more characteristics to take advantage of 
the data for most or all sites. Third, rather than prun-
ing or normalizing the data, the variability can also 
be recognized by increasing the confidence interval. 
This confidence interval can be estimated by taking 
a subset of normalized data and comparing it to the 
raw data. For the Monterey Peninsula area, the larg-
est proportional variation among years was in dive 
platform (boat dives vs. shore dives) and geographic 
area (Carmel Bay vs. south Monterey Bay). For the 
15-year study period, the fraction of boat dives var-
ied among years from 11% to 64%, and the fraction 
of dives occurring in Carmel Bay ranged from 15% 
to 59% (fig. 5). For a given species, the mean number 
of fish sighted per year were adjusted or “normalized” 
to remove the variation caused by differing propor-
tions of boat dives or Carmel Bay dives from year to 
year. The proportion of boat dives were normalized 
around the fifteen year average of 44%, while the pro-
portion of Carmel Bay dives were normalized around 
the fifteen year average of 42%. The coefficient of 
variation between the unaltered raw data and the nor-
malized data were calculated for three commonly seen 
species. The pooled three-species COV was used to 
increase the confidence interval to account for dive 
site variation.

10% of dives reporting Abundant counts, and “abun-
dant” or “schooling” species with a higher proportion 
of Abundant counts. The “abundant” species counts had 
less precision, both because they do not fit a log-nor-
mal distribution as well (fig. 3), and because they are not 
bounded by a “Super-abundant” category (over 1,000 
individuals). The seven “typical” species were lingcod 
(Ophiodon elongatus), kelp greenling (Hexagrammos deca-
grammus), painted greenling (Oxylebius pictus), striped 
seaperch (Embiotoca lateralis), black seaperch (Embiotoca 
jacksoni), pile seaperch (Damalichthys vacca), and kelp rock-
fish (Sebastes atrovirens). All “typical” species reported less 
than 2% Abundant counts. The four “abundant” species 
were blue rockfish (Sebastes mystinus), senorita (Oxyjulis 
californica), tubesnout (Aulorhychus flavidus), and juvenile/
young-of-year (YOY) rockfish (Sebastes spp). For the 
“abundant” species, the proportion of Abundant counts 
ranged from 21% to 41%.

Observational Variance Confidence Intervals:  Three 
sources of variance in observational consistency were 
quantified:
1.	 Variability from different divers surveying the same dive 

site with uneven fish distribution. At the same dive site 
under the same conditions, divers will observe differ-
ent numbers of fish. Part of this is due to the uneven 
distribution of fish across the site, and part of this is 
due to variation between divers in survey preferences 
and diving styles (e.g. path taken, swimming speed, 
preferred habitats). To quantify this aspect of obser-
vational variability, a study was conducted in May 
2012 during a REEF Field Survey in the Monterey 
area where 18 experienced divers made exact counts 
of three common fish species (kelp greenling, striped 
seaperch, and blue rockfish) at two boat dive sites in 
Carmel Bay on one day (Outer Butterfly House and 
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Each of the three models, using their respective best-
fit parameters, define expected/observed mean ratios for 
each of the 36 species, as well as summary statistics for 
all 36 species together (table 2).

AICc Model Comparison 
The models based on disaggregated SFMA bin data 

(models 2 and 3) had substantially better AICc scores 
than the model based on an aggregate log-density index 
derived from the same SFMA data (model 1) (table 3). 
Of the two disaggregated bin data models, Model 3 
scored better than Model 2 by a significant margin, with 
an associated AICc relative weight (probability) of 99.6% 
(table 3) for the models considered.

Translational Imprecision Confidence Interval
As the best model determined from AICc, Model 

3 was examined in more detail. Plotting the expected 
mean against observed numeric mean for each of the 
36 species resulted in almost a straight 1:1 line, giving a 
qualitative sense of the preciseness of this data conver-
sion (figs. 6a and 6b). 

From the bootstrap method, the translational confi-
dence interval can be described as a function of n, the 
number of nonzero sightings, as follows:

		  b
Species Category Confidence Interval90% or 95% = a + 	

		  (n – 1)c

	  	 (13)

The coefficients a, b, and c are defined according to 
species category (typical vs. abundant) and confidence 
interval (90% vs. 95% interval, that is, 5% vs. 2.5% low 
and high tail exclusions). Table 4 lists the coefficients 
used in Equation 13.

The predicted 90% confidence intervals for typical 
species were x/41% for 10 surveys, x/29% for 20 surveys, 
x/25% for 30 surveys, x/20% for 50 surveys, and x/17% 
for 80 surveys.

At very high numbers of nonzero sightings, where 
the estimate error asymptotically approaches a minimum 
value (fig. 7), the error for the typical species category 
was greater than that for abundant species. Therefore, at 
large n sightings (more than about 130 nonzero surveys), 
the confidence interval for abundant species should be 
the maximum of either the typical or abundant species 
confidence interval equations.

Observational Variability Confidence Interval
Variability Between Divers:  For the May 2012 study 

with 18 divers making exact counts of three species at 
two dive sites on a single day, the pooled coefficient of 
variation was found to be 1.11 (two dives x three species, 
weighted by relative number of nonzero sightings). This 

Orthogonal Combination of Variability:  The three 
separate sources of observational variability described 
above are independent of each other. Likewise, con-
versional imprecision and observational variability are 
independent of each other. Such independent sources of 
variability are mathematically orthogonal to each other, 
and are therefore combined or “pooled” by the square 
root of the sum of the squares (SRSS) method (Tay-
lor 1997; Hogan 2006; NASA 2010), weighted by the 
relative number of observations where appropriate. The 
Coefficient of Variation (COV), defined in this case as 
standard error divided by the mean, for observational 
variability was then calculated as COV/√ n – 1 where n 
is the number of nonzero sightings.

RESULTS

Optimized Parameters for the Three Models
Based on minimizing the sum of ∆2 for all 36 fish 

species, the best parametric fit was found for each of 
the three models. The optimized parameters, and result-
ing standard deviation and coefficient of variation of 
the expected-to-observed mean ratios, were as follows:

Model 1:
ExpectedMean1 = 5.73(DEN–1)1.28	 (10)

Std.Dev.(ExpMean1/ObsMean) = 0.369

COV(SD/avg(ExpMean1/ObsMean)) = 0.282	

Model 2:
		  S + 2.80F + 24.5M + 300A
ExpectedMean2 =	 	
		  S + F + M + A	

Std.Dev.(ExpMean2/ObsMean) = 0.105	 (11)

COV(SD/avg(ExpMean2/ObsMean)) = 0.104	

Model 3:
		  2S + 4.16F + 10M
	 AvgF =	 	
		  S + F + M 

		  11F + 33.8M + 100A
	 AvgM =	 	 (12)
		  F + M + A 

		  200M + 348A
	 AvgA =	 	
		  M + A 

		  S+F •AvgF+M •AvgM+A •AvgA
	 ExpectedMean3 =	 	
			   S + F + M + A

Std.Dev.(ExpMean3/ObsMean) = 0.085

COV(SD/avg(ExpMean3/ObsMean)) = 0.085	
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Variability From Differing Conditions Over a Year:   
Looking at three common fish species, the pooled coef-
ficient of variation for differing conditions over the year 
was found to be 0.79. However, part of this variation was 
not random, but instead reflected real population trends. 
Another part of this variation, surveying different areas 
at the same site, overlaps and repeats the variation mea-
sured in the May 2012 study. Assuming that 40% of this 
variation is due to differing conditions over the year at 
the same site, this coefficient of unique variation is esti-
mated to be 0.32.

Variability From a Changing Mix of Dive Sites:   
Year-to-year fluctuations in fish populations, normalized 
for Monterey Bay versus Carmel Bay dives (fig. 5), and 
shore versus boat dives (fig. 5), were compared against 
the raw data (fig. 8). Calculating the coefficient of varia-
tion for each of the three species, and pooling appropri-

captures the variability from divers with different survey-
ing habits, preferences and swimming speeds, taking dif-
ferent routes across the same dive site, and counting fish 
that move about and are found in patches across the site.

TABLE 2
Comparison of models for 36 fish species based on 292 exact-count surveys.

				    Expected Mean			  Expected/Observed Ratio 
				    per Model			   per Model

	 Species Name	 Observed Mean	 1	 2	 3	 1	 2	 3

  1	 Striped Seaperch	 17.1	 37.1	 17.6	 20.0	 1.78	 1.03	 1.17
  2	 Blue Rockfish	 114.6	 123.3	 117.8	 119.5	 0.83	 1.02	 1.04
  3	 Kelp Rockfish	 12.7	 21.6	 11.9	 12.4	 1.44	 0.94	 0.98
  4	 Kelp Greenling	 3.3	 5.6	 2.7	 3.2	 1.54	 0.82	 0.96
  5	 Pile Perch	 8.0	 10.7	 8.0	 7.5	 1.18	 1.00	 0.94
  6	 Painted Greenling	 6.3	 8.8	 5.7	 5.6	 1.25	 0.91	 0.89
  7	 Black Perch	 4.6	 7.4	 4.7	 4.6	 1.45	 1.02	 1.01
  8	 Black & Yellow Rockfish	 3.4	 5.8	 3.0	 3.4	 1.54	 0.89	 0.99
  9	 Blackeye Goby	 6.6	 9.1	 7.4	 6.8	 1.22	 1.11	 1.02
10	 Black Rockfish	 5.6	 7.2	 5.1	 4.8	 1.16	 0.91	 0.87
11	 Senorita	 67.1	 66.6	 77.0	 76.3	 0.79	 1.14	 1.14
12	 Lingcod	 2.0	 3.3	 2.0	 2.2	 1.54	 0.97	 1.07
13	 YOY Rockfish	 125.7	 81.0	 106.7	 107.5	 0.51	 0.84	 0.86
14	 Tubesnout	 143.4	 76.9	 118.3	 121.4	 0.42	 0.82	 0.85
15	 Olive Rockfish	 4.1	 5.9	 4.3	 4.1	 1.32	 1.06	 1.00
16	 Gopher Rockfish	 3.2	 4.4	 2.7	 2.8	 1.29	 0.84	 0.89
17	 Cabezon	 1.6	 2.1	 1.6	 1.6	 1.27	 1.00	 0.99
18	 Kelp Perch	 10.3	 8.3	 12.1	 10.6	 0.72	 1.17	 1.03
19	 Rubberlip Surfperch	 5.6	 7.5	 5.7	 5.3	 1.22	 1.02	 0.96
20	 Reef Surfperch	 15.8	 27.1	 14.4	 15.9	 1.43	 0.91	 1.01
21	 Rainbow Surfperch	 10.4	 10.1	 8.9	 8.8	 0.85	 0.86	 0.85
22	 Copper Rockfish	 2.5	 3.4	 2.8	 2.6	 1.27	 1.10	 1.02
23	 Snubnose Sculpin	 1.7	 2.4	 1.7	 1.7	 1.36	 1.01	 1.02
24	 Speckled Sanddab	 4.0	 6.8	 4.6	 4.4	 1.54	 1.15	 1.12
25	 Yellowtail Rockfish	 3.4	 4.8	 4.0	 3.6	 1.31	 1.18	 1.08
26	 Gibbonsia Kelpfish	 1.2	 1.3	 1.2	 1.2	 1.07	 1.00	 0.94
27	 Treefish	 1.4	 1.8	 1.5	 1.4	 1.23	 1.04	 0.99
28	 Monkeyface Prickleback Eel	 1.4	 1.8	 1.5	 1.4	 1.31	 1.10	 1.06
29	 Vermillion Rockfish	 1.1	 1.3	 1.2	 1.1	 1.14	 1.08	 1.02
30	 Opaleye	 2.8	 4.3	 3.3	 3.1	 1.43	 1.19	 1.12
31	 California Sheephead	 2.2	 3.8	 2.1	 2.4	 1.62	 0.94	 1.08
32	 Blacksmith	 68.0	 18.4	 77.0	 79.6	 0.23	 1.13	 1.17
33	 Scalyhead Sculpin	 1.4	 1.8	 1.5	 1.4	 1.25	 1.04	 1.01
34	 Grass Rockfish	 1.3	 1.5	 1.3	 1.3	 1.13	 1.02	 0.96
35	 Kelp/Calico Bass	 1.3	 1.6	 1.4	 1.3	 1.19	 1.05	 0.99
36	 Coralline Sculpin	 1.3	 1.6	 1.4	 1.3	 1.26	 1.10	 1.05

		  Standard Deviation of (Expected Mean / Observed Mean)	 0.338	 0.105	 0.085
		  Coefficient of Variation [SD / mean(Expected Mean / Observed Mean)]	 0.282	 0.104	 0.085
		  RSS/n	 0.1746	 0.0110	 0.0071

Note: RSS = sum of ln (Expected Mean / Observed Mean) squared

TABLE 3
Akaike Information Criterion (AICc) comparison of  

Models. The model with the lowest AICc value indicates 
the best balance between under- and over-fitting,  

with best relative likelihood (probability). 

				    AIC Weight, wi 
Model	 RSS/n	 k 	 AICc	 (probability)

Model 1	 0.1746	 3	 –54.3	 0.000
Model 2	 0.0110	 4	 –153.1	 0.001
Model 3*	 0.0069	   9*	 –154.2	 0.003
Model 3	 0.0071	 5	 –161.1	 0.996
* A variation of Model 3 where the a priori constants 2, 10, 11, and 100 are allowed 
to vary to more closely fit observed data. Per AICc, this approach, which increases the 
number of fitting parameters to minimize RSS, overfits the data.
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normal distribution, it is more accurate to express the 
standard deviation relative to the mean as the mean mul-
tiplied or divided by υ + √ 1 + υ2 where υ = 1.16/√ n – 1

Combined Translational and Observational 
Confidence Intervals

The observational error can be combined with the 
SFMA translational error using SRSS to express the 
combined error as a function of the number of non-
zero sightings in a year for two fish species catego-
ries, typical and abundant (fig. 9). The same combined 
error is also expressed as coefficients of Equation 13 in 
Table 4. For typical fish species, the 90% confidence 
interval drops below x/30% at 60 sightings per year, and 
the 95% confidence interval drops below x/30% at 90 
sightings per year. 

DISCUSSION
Models for Estimating Abundances:  The methods 

described in this paper convert order-of-magnitude 
counts to an aggregate arithmetic mean with a reason-
ably small confidence interval, given a sufficient number 
of surveys. Parameters for each model were optimized 
for best fit to 36 fish species common to the Mon-
terey Peninsula in California. The distributions of exact 
counts from 292 surveys for these 36 fish species were 
essentially log-normal. Because these distributions were 
generated by roving diver “random walks” across patchy 
distributions of fish on nearshore reefs, the optimized 
estimation parameters, based on underlying stochastic 
distributions, are likely to also apply to other species and 
geographic regions.

ately, leads to a coefficient of variation of 0.15.
Observational Variability Pooled Across Sources:  

The pooled coefficient of variation for the three sources 
of observational error is therefore estimated to be 

√ 1.112 + 0.322 + 0.152 = 1.16.

Observational standard error (normalized to one) as a func-
tion of n surveys is ±1.16/√ n – 1 . Because this is a log-
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Figure 6:  Model 3’s expected versus observed mean number of fish sighted per dive for various species (each data point represents an observed fish species). 
Data from a perfect predictive model would fall on a 1:1 line. Figure 6a (left graph) shows the full range of species’ predicted and observed counts (0–160). Figure 
6b (right graph) shows that most species cluster in the region of 20 or fewer average sightings per dive.

TABLE 4
Coefficients for Calculating Confidence Interval,  

C.I. = a+b/(n–1)c for Model 3,  
where n = number of nonzero fish sightings  
for a given species, area, and time period.

Species Category:	 Typical Species	 Abundant Species

Proportion of  		   
Abundant Counts:	 Less than 10%	 More than 10%

	 TRANSLATIONAL ERROR

Confidence Interval:	 90%	 95%	 90%	 95%

Coefficients:			 
a	 0.05	 0.06	 –1.80	 –2.16
b	 1.07	 1.28	 3.53	 4.22
c	 0.50	 0.50	 0.12	 0.12
				  
	 TRANSLATIONAL +  
	 OBSERVATIONAL ERROR

Confidence Interval:	 90%	 95%	 90%	 95%

Coefficients:	
a	 0.02	 0.03	 –0.26	 –0.27
b	 2.03	 2.42	 3.20	 3.88
c	 0.48	 0.48	 0.38	 0.39

Translational Error = Uncertainty from converting SFMA log10-bin count data to 
expected arithmetic mean.

Observational Error = Uncertainty from stochastic distribution of fish across a dive 
site, and variability between divers, diving conditions, and dive sites.
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plotted over 15 years, based on REEF surveys around the Monterey Peninsula, California. For purposes of comparison, raw 
data estimates are plotted alongside data normalized for consistent year-to-year boat/shore and Carmel/Monterey ratios. 
Solid lines are raw data, dashed lines are normalized for boat versus shore dive sites, and thin lines are normalized for Car-
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differences between raw and normalized data.
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authors considered these a priori constant properties 
based on the definition of Few (2–10) and Many (11–
100). In fact, a slightly smaller apparent confidence inter-
val can be attained if these constants are allowed to vary 
as fitting parameters. However, AICc analysis revealed 
that allowing these constants to vary (k = 9) is inappro-
priate overfitting. 

Even though Model 2 does not prevail according to 
AICc scoring, it may nevertheless be attractive to some 
researchers because of its simple formation and rea-
sonable accuracy, with a sacrifice of only about 22% 
in increased confidence interval compared to Model 3.

Model 1, with a confidence interval roughly three 
times larger than Models 2 and 3, can still be use-
ful in making rough estimates and discerning global 
trends, when the only data available are the sighting 
frequency (SF) and log-density index (DEN) informa-
tion available to the public on the www.REEF.org Web 
site. Disaggregated SFMA data, upon which Mod-
els 2 and 3 rely, are available to researchers through  
special request.

Some researchers may propose ordered logit regres-
sion as an alternative estimation method. A preliminary 
investigation suggests that this approach will achieve 
AICc scores better than Model 1, but worse than Models 
2 and 3. This might be expected, because the method is 

Both the coefficient of variation of the predicted/
observed ratios and AICc scoring suggests that Model 
3 is the most accurate in converting SFMA data to 
numeric means. Model 3 appears to be the most effec-
tive because it (a) considers the relative proportion of 
adjacent count bins, and (b) reflects the underlying log-
normal distribution of fish sightings. In fact, the exact 
count data indicate that the f f and mm coefficients are 
close to (within 5% of) the mean of the log-transformed 
bounds for their respective ranges. That is:

ff = 4.16 ≈ e(ln(1.5) + ln(10.5))/2 = 3.97	 (14)

mm = 33.8 ≈ e(ln(10.5) + ln(100.5))/2 = 32.5	 (15)

The values for these coefficients make intuitive sense 
because the sightings in the integer sub-bins (e.g., 2, 
3…9, 10) within each range (e.g., Few) decline expo-
nentially. Because the Abundant category is the highest 
order of magnitude counted, the am and aa coefficients 
do not follow the same pattern.

Per the AICc selection criterion, Model 3 prevails 
over Model 2 given the assumed values for k, the num-
ber of parameters, of 5 and 4, respectively. Some may 
argue that the constants 2, 10, 11, and 100 found in 
Estimate 3 are actually AIC parameters and should be 
accounted for in k when calculating AICc scores. The 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 30 60 90 120 150 180 210

number of non‐zero surveys

ob
se
rv
at
io
na

l +
 tr
an

sl
at
io
na

l 
co
nf
id
en

ce
 in

te
rv
al
 re

la
tiv

e 
to
 th

e 
m
ea

n

 typical species, 90% conf. int.

 typical species, 95% conf. int.

 abund. species, 90% conf. int.

 abund. species, 95% conf. int.
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1. 	Strict instructions to surveyors to not count any fish 
seen whose species cannot be positively identified 
(Pattengil-Semmens and Semmens 2003a). Novice 
surveyors therefore undercount less readily identified 
species (fig. 10). However, previous research suggests 
that novices count the number of individuals of spe-
cies that they can identify as accurately as experts 
(Pattengill-Semmens and Semmens 1998).

2. 	Tendency to overlook cryptic bottom dwelling spe-
cies as well as fish sheltering in concealed unobserv-
able crevices.

3. 	Tendency to not notice pelagic fish swimming over-
head or those quickly swimming in and out of view.

4. 	Inability to see sufficient distance in low visibility 
conditions.

5. 	Inability to thoroughly examine the bottom in high 
surge conditions.

6. 	Tendency of divers to not count the same fish twice 
on the return leg of their route (affects density esti-
mates that are based on estimated length of dive route).

7. 	Tendency of divers to undercount schools of fish. Har-
rison Stubbs (pers. comm. June 2012) has observed 
that most people consistently underestimate the num-
ber of fish in a still photo of schooling fish,. Even 
greater bias may occur in situ where a school is con-
stantly moving. This could explain the truncated log-
normal distribution at higher fish counts shown in 
Figure 1b, as well as the higher deviations at higher 
counts shown in Figure 3.

designed for analyzing qualitative ranges such as opinions 
that range from “strongly disagree” to “strongly agree.” 
Because the logit function is based on the premise of 
evenly distributed categories, other ordinal regression 
(cumulative probability) approaches may prove more 
fruitful, such as negative log-log, based on the more 
accurate assumption that lower categories are more 
probable (Norusis 2011).

Dive Site Mix Normalizing Versus Increased Confi-
dence Interval:  The reported observational error to take 
into account a varying mix of dive sites (COV = 0.15) is 
specific to the Monterey Peninsula data, to the dive site 
characteristics considered, and to the three species con-
sidered. As such, it only represents what may be a “typi-
cal” value for this kind of variability in REEF surveys. It 
is always preferable to instead control the dive site mix, 
by either culling dive site data to maintain a consistent 
mix, or to normalize a varying mix of dive sites. When 
the dive site mix is not controlled or normalized, it is 
preferable to use COV = 0.15 rather than ignore this 
contribution to variability altogether.

Bias Towards Undercounting.  The REEF RDT sur-
vey method may have a consistent tendency to under-
count fish populations, leading to conservative estimates 
of absolute fish densities if this tendency is not accounted 
for in analyses. However, because this bias is consistent 
over time, underlying population dynamics should be 
discernable even if the bias is not corrected. The under-
count bias is due to several factors:
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vation error appeared to be reasonably small. For the 
Monterey data, with annual number of surveys ranging 
from 50 to 353, it appeared that 90% confidence inter-
vals (5% high and low tails) of combined SFMA con-
version and observation error were typically less than 
x/30% relative to the mean. For fish population esti-
mates, where confidence intervals are often very broad, 
this demonstrates that fish population estimates with rea-
sonable error bars can be attained at remarkably low 
cost with citizen science volunteer efforts supported by 
a small professional staff. 

The authors believe that the methodology of con-
verting SFMA data to numeric means described in this 
paper can be applied to other coastal ocean areas where 
large numbers of REEF surveys have been conducted. 
In addition to the Monterey area of central Califor-
nia, REEF maintains a long-term database of surveys 
for many areas of the coastal United States and Carib-
bean, including the Pacific Northwest, Southern Califor-
nia, Hawaii, the South Pacific, and the tropical western 
Atlantic. The estimation method described in this paper 
should also prove useful in analyzing data from other 
order-of-magnitude population survey efforts.
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