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1  |  INTRODUCTION

As marine conservation grows in importance, data are needed to 
monitor the efficacy of interventions and to observe disruptions to 
ecosystems to mitigate damage. However, data is expensive to col-
lect and is likely focused on areas of perceived importance (Campbell 
et al., 2022). Citizen science presents an effective, low-cost way to 
measure species abundance at both regional and global scales.

Since the 1990s, the Reef Environmental Education Foundation 
(REEF, 2021) has provided citizen scientists with an opportunity to 
collect fish-count data while snorkeling and diving recreationally 
(REEF, 2021). Data collection has resulted in a dataset comprised of 
over 250,000 roving diver survey observations (“surveys”) at over 
15,000 locations globally (Rassweiler et al., 2020; REEF, 2021). The 
roving diver protocol used by REEF allows divers to freely move 
and record each species they observe, without restrictions on time 
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Abstract
Citizen science is growing in importance for ecosystem management and long-term 
monitoring. A large marine citizen-science project operated by the Reef Environmental 
Education Foundation (2021, Reef environmental education foundation volunteer fish 
survey project database, World Wide Web electronic publication) collected logarith-
mic categorical data for species abundance across a number of otherwise understud-
ied reefs in The Bahamas and Turks and Caicos during 1994–2020. We used several 
statistical models to estimate the presence and abundance of trends from these data. 
Variously specified abundance and presence-absence models were fit to simulated 
count data, simulated categorized count data, and real-world categorical data for 
Queen Triggerfish (Balistes vetula). These models produced simple patterns of pres-
ence and abundance from simulated data with minimal bias that were reasonable pre-
dictions based on cross-validation. Based on model-based estimates of presence and 
abundance, the Queen Triggerfish population decreased significantly in The Bahamas 
and Turks and Caicos during 1994–2020. This simple method for imputing abundance 
from size-category counts at the level of individual diver observations, rather than 
aggregated across multiple observations, allows for higher resolution modeling of 
predictors of presence and abundance, with implications for other understudied reef-
dwelling species.
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underwater or distance traveled. This data has proven valuable for 
determining the efficacy of marine protected areas, and for moni-
toring population trends (Gravem et al., 2020; Pattengill-Semmens 
& Semmens, 2003). However, several features of the dataset make 
fine-scale analysis difficult. Data collection is opportunistic, so the 
dataset contains many variables that are strongly correlated to the 
particularities of the sampling, such as depth of survey and bottom 
time, which makes hypothesis testing difficult. Data is also collected 
by many surveyors of differing levels of experience in identifying 
different species, which adds an additional layer of error to the data-
set. These kinds of problems have been addressed in analyses of 
other large opportunistic datasets (e.g., eBird, Johnston et al., 2021). 
Current best practices for citizen science rely on statistical models 
(Johnston et al.,  2021). Previous modeling has incorporated REEF 
presence-absence information into larger model-training sets, or 
combined information from multiple surveys and external count in-
formation to create abundance indices (Campbell et al., 2022; Grüss 
et al., 2018; Montecino-Latorre et al., 2016; Tolimieri et al., 2017).

Due to the abundance and diversity of reef fish, the abundance 
of each encountered species is difficult to estimate while diving. This 
led to the creation of a categorical count system that allows divers to 
mark whether they observed a single individual, a few individuals (2–
10), many individuals (10–100), or abundant individuals (100+). This 
data also contains zeros, which imply that a species was not present 
or that the diver was unable to identify or did not see a species. While 
Single-Few-Many-Abundant (SFMA) categories are representative 
of actual abundance, they are condensed into a single categorical 
value. REEF divers record information in the form of a species check-
list, allowing them to “check off” each species positively identified 
and mark its abundance category on a dive. For each checklist (i.e., 
survey), the date, time, and environmental variables are recorded, 
and REEF staff members internally mark the surveyor's experience 
level on each survey when the data are entered into the database. 
REEF also records a measure of surveyor experience. Surveyors 
move from novice to experienced by completing a specified number 
of surveys within a region and taking an identification quiz. Existing 
methods infer a mean abundance from REEF categories aggregated 
across multiple surveys, but do not account for information from 
confounding variables such as dive duration (Campbell et al., 2022; 
Tolimieri et al., 2017; Wolfe & Pattengill-Semmens, 2013a). At the 
survey level, REEF data can be interpreted as binary (presence-
absence) or multinomial (by categories), although models based on 
these distributions omit much of the information on the abundance 
that is captured by SFMA categories.

One way to reduce errors produced by a lack of observer 
skill is to examine species that are easily identifiable. The Queen 
Triggerfish (Balistes vetula) is an easily identifiable species with pur-
ple markings along its body, ornate fins, and a distinct body shape 
(Figure 1). The Queen Triggerfish is also large enough to be easily 
observed by a roving diver, which alleviates some concern about 
surveyors being unable to identify a species and makes it a good 
candidate for a model organism in citizen science. While the Queen 

Triggerfish is of minor economic importance, it is a food fish locally, 
and few fisheries-based or fishery-independent data sources in-
clude this species. Artisanal fisheries have led to local reductions in 
population elsewhere, and the species is listed as near threatened 
by the IUCN red list because of depletion in part of its range (Liu 
et al., 2015; Sagarese et al., 2018). No data from The Bahamas and 
Turks and Caicos were used in evaluating Queen Triggerfish for list-
ing (Figure 2).

Our objective was to determine if trends in the presence and 
abundance of Queen Triggerfish in The Bahamas, Turks, and Caicos 
could be estimated by accounting for variability in sampling de-
tails of REEF surveys (duration, experience, time of sampling). 
The method includes two steps, an imputation of the number of 
fish observed in each survey based on counts in each size cate-
gory. and then a Generalized Additive Model (GAM) to predict 
mean abundance in each survey. Many predictor variables affect 
abundance nonlinearly, so linear regression is likely inappropriate. 
Thus, Generalized Additive Models were used because they allow 
for a non-linear relationship between predictor variables and the 
response variable, estimated through penalized smoothing func-
tions. This family of models has already been applied to binomial 
data, but has not been applied to abundance information contained 
in REEF (Grüss et al.,  2018). Like linear models, GAM predicts 
mean abundance for each observation as a function of predictor 
variables. This two-part estimation method was tested in simula-
tion, and then applied to the Queen Triggerfish, to confirm that 
it worked in practice with covariates collected by REEF. Without 
the ability to account for survey covariates, changes in observed 
abundance could also be caused by changes in underlying survey 
conditions. These methods allow results to be more robust and are 
closer to best practices for other semi-structured citizen science 
initiatives (Johnston et al., 2021). Although the use of abundance 
information may not be necessary for all species because patterns 
in abundance and presence-absence are likely to be similar, abun-
dance is more information-rich, and for some species, can be more 
informative (Joseph et al., 2006).

F IGURE  1 An adult Queen Triggerfish (Balistes vetula) observed 
by the author on a reef slope in Belize on 2/19/2014.
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    | 3URQUHART et al.

2  | METHODS

2.1  |  Imputation of categorical data

The number of observations in adjacent abundance categories 
was used to estimate the arithmetic mean of each category as 
if the sampled distribution was log-normal (Wolfe & Pattengill-
Semmens, 2013a, 2013b). These averages were then used to esti-
mate average abundance over a particular group of surveys. In REEF 
data, four abundance categories are non-zero: S  =  number of ob-
servations of lone organisms, F = number of observations of 2–10 
organisms, M = number of observations of 11–100 organisms, and 
A  =  number of observations of >100 organisms. The mean abun-
dance in each category was estimated as follows:

Where AverageF, AverageM, and AverageA are estimated aver-
age counts in the F, M, and A categories, and MeanAbundance is the 
average count per observation. Because S is the number of solitary 
fish observed (i.e., average = 1), S is used directly in equation 1d.

This method was derived by calibrating the average value for 
each category to actual count data that was taken concurrently with 
SFMA counts in California and creating a simulated confidence in-
terval for the mean (Wolfe & Pattengill-Semmens,  2013a, 2013b). 
For our analysis, instead of aggregating scores to estimate mean 
abundance across multiple observations, values of each survey 
were imputed as the mean of its reported abundance category (i.e., 
AverageF, AverageM, or AverageA). These averages were calculated 
over the entire dataset so that each observation of the same SFMA 
category was given the same value. This method does not incorpo-
rate errors introduced by the process of imputing abundance from 
REEF categories. Substituting the mean for each category is a very 
simple method, but produces a y variable that is appropriately scaled 
to convey information about the relative abundance of observations.

(1a)AverageF = (2∗S + 4.16∗F + 10∗M)∕ (S + F +M)

(1b)AverageM = (11∗F + 33.8∗F + 100∗A)∕ (F +M + A)

(1c)AverageA = (200∗M + 348∗A)∕ (M + A)

(1d)

MeanAbundance= (S+F ∗AverageF+M∗AverageM+A∗AverageA)∕

(S+F+M+A)

F IGURE  2 Locations of sites surveyed for reef fishes by divers in The Bahamas and Turks and Caicos during 1994–2020 (Reef 
Environmental Education Foundation, REEF).
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4  |    URQUHART et al.

Only 10 observations were of the abundant category of Queen 
Triggerfish in REEF data and were omitted due to missing infor-
mation in important covariates. Therefore, models were trained 
with only sub-100 counts, and abundant counts were not con-
sidered. Averages were calculated over the entire dataset so that 
each observation of the same SFM category had the same value: 
AverageF = 3.234952 and AverageM = 12.518702.

2.2  |  Simulated data

To examine potential bias in applying a negative binomial model to 
imputed count data from categories, a simulated dataset was cre-
ated for model comparison in R (R Developement Core Team, 2020). 
Parameters were selected to mimic data for Queen Triggerfish 
used in this study (Figure  3). The Few and Many categories were 
slightly overrepresented in simulated data compared to actual data 
for Queen Triggerfish, and the abundant category was missing as 
in the actual data. Data were simulated by randomly generating a 
set of variables (x), with sample sizes ranging from 100 to 10,000, 
where x was taken from a uniform distribution from −3 to 3, and 
then generating count data (y) from a negative binomial distribu-
tion with mean � = ex, and size = 10. Samples of 100, incremented 
in size by 100 (ranging from 100 to 10,000), were used to determine 
how model performance changed with the amount of training data. 
Each simulated data set resulted in abundance data that could be 
described by a negative binomial model with one independent x-
variable of slope = 1 and intercept = 0 when modeled with a log link 
Generalized Linear Model (GLM). The negative binomial distribution 
is often applied to over-dispersed count data of organisms, such as 
citizen science data (Johnston et al., 2021). Simulated count data was 
then coerced into 0-SFM categories by replacing counts between 2 
and 10 with F, and counts between 11 and 100 with M.

Negative binomial GLM was then applied with four versions of 
abundance data. In the first GLM, the y variable was the original 
uncategorized data, for comparison to models fitted to abundance 
imputed from SFM categories. In the second GLM, y was abundance 
data after being coerced into SFM categories and then converted 
back to abundance with imputed category means (Equation 1). In 
the third model, abundance (y) was imputed as minimum possible 
values for each observation category (i.e., F = 2, M = 11, A = 101). 
In the fourth GLM, an alternative exponential imputation method 
was used (Wolfe & Pattengill-Semmens,  2013a, 2013b), in which 
y = 5.73^(DEN-1)^1.28, where DEN was an index (S = 1, F = 2, M = 3, 
and A = 4). The mean method described in Equation 1 was consid-
ered to be the best (Wolfe & Pattengill-Semmens,  2013a, 2013b), 
whereas the other two methods were used to evaluate how much 
the imputation method influenced the imputed trend. All models 
were fit using the MGCV package in R, with the x variable assumed 
to have a linear relationship with the log link mean (Wood, 2017).

Categorized and uncategorized model predictions were com-
pared to true uncategorized count data to measure how well-
categorized data tracked true underlying abundance trends. True 

and predicted data were compared with root mean square error 
(RMSE), R-squared (R2), and average error:

Where N is the number of values, yi is the ith recorded value, y′
i
 

is the ith predicted value, and 
‼
y is the mean value of the variable. 

(2a)R2 = 1 −
∑N

i=1

(

yi−y�
i

)2
∕
∑N

i=1

(

yi−
‼
y

)2

(2b)RMSE =

√

√

√

√

N
∑

i=1

(

yi−y�
i

)2
∕N

(2c)AverageError =

N
∑

i=i

(

y�
i
− yi

)

∕N

F IGURE  3 Counts of 10,000 simulated observations (Top) and 
actual data (Bottom) of zero (Category 0), one (Category 1), few (2–
10), and many (11–100) Queen Triggerfish (Balistes vetula) observed 
by citizen-science divers in The Bahamas and Turks and Caicos 
during 1994–2020 (Reef Environmental Education Foundation, 
REEF).
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    | 5URQUHART et al.

Metrics were calculated with both yi and y′
i
 as either uncategorized 

abundance counts or means imputed from categories to evaluate 
how much error was introduced by using an imputed mean rather 
than counts. Categorized model predictions were also compared to 
categorized counts using the fraction of predictions that were in the 
correct abundance category. Code Appendix S1 contains code used 
to simulate categorized values, fit models, and calculate metrics. 
After metrics were calculated for each simulated sample and model, 
the mean and standard deviation among samples were calculated 
for each metric.

2.3  |  Fitting to REEF data

REEF data was used from 1994 through 2020 in The Bahamas and 
Turks and Caicos (Figure 2) (REEF). Data manipulation was in R using 
RStudio with the tidyverse, measurements, lubridate, and lunar 
packages (Birk, 2019; Grolemund & Wickham, 2011; Lazaridis, 2020; 
R Core Team, 2020; RStudio, 2022; Wickham et al., 2019). Most sur-
veys were collected by novice REEF surveyors, so data were not 
excluded based on experience. This was justified by the use of an 
easily identified model species, and the inclusion of experience as 
a binary parameter in the model. Surveys for which depth, visibil-
ity, habitat, current, and start time were recorded as zero were ex-
cluded because zero reflected missing data for most variables. For 
example, the lowest depth category recorded by REEF (a snorkel) is 
recorded as a 1, not a 0. For Start Time, although dives can begin at 
00:00, an anomalous number of dives began at that time compared 
to other times late in the evening, so we assumed they were data 
entry errors. Surface and bottom temperatures below 10°C were 
well below Bahamian climatology, so were excluded. Bottom times 
<10  min and longer than 100 min were excluded. This was done 
based on work done with eBird data which standardized survey ef-
forts in a similar fashion (Johnston et al., 2021). This filter removed 
<3% of the available surveys and so effectively removed durations 
for which high precision estimation was not feasible. Average depth, 
current, and visibility were collected by REEF as ordered categories 
(Appendix  S1). Dives deeper than 24 m were combined into one 
category due to the small number at that depth. They were not ex-
cluded because the ordinal parametric fit used to model categories 
was capable of fitting to a category for dives of a certain depth or 
greater. Habitats with <100 observations were excluded since the 
precise estimation of occurrence within those habitats was not pos-
sible. After data cleanup, all observations of abundant (>100) Queen 
triggerfish contained several data entry issues, were outliers (10 of 
18,345 total observations), and were therefore excluded from the 
analysis. The original dataset of 18,345 observations was reduced to 
7380 after observations with missing values were omitted (Table 1; 
Appendix S1).

Lunar phase in radians and decimal day of the year were calcu-
lated from the date recorded for each survey. Queen Triggerfish, 
like several other large reef fish, aggregate seasonally for breeding 

during the full moon (Bryan et al., 2019), the only known aggregation 
by this species. To accommodate this behavior, a Boolean variable 
(0,1) was used to represent whether or not a survey fell on a full 
moon during peak breeding activity from November to March. The 
full moon was defined as the quarter of the lunar cycle centered 
around the full moon (approximately 4 days before and after).

Variables were selected for inclusion in models using Akaike 
Information Criterion (AIC). AIC selection was used for selecting 
terms to reduce overfitting because models were fit to the same 
dataset (Hastie et al., 2009). The bidirectional selection was used, 
starting with backward selection, and then testing if adding any 
variables back to the final model improved the AIC score. The model 
with the lowest AIC was selected. After AIC selection, the selected 
model was fit to the entire valid dataset for selected variables. 
Variables included: Visibility, Depth, Bottom time, surface tempera-
ture, latitude, longitude, current, breeding vs non-breeding, moon 
phase, decimal day of the year, decimal year, surveyor experience 
(Expert or Novice), and start time. Cyclical variables were fit using a 
cyclic cubic spline, and other numeric variables were fit using thin-
plate regressor splines. Latitude and longitude were incorporated 
into the model using a tensor product smooth, and the breeding 
variable was treated as an interaction variable on the latitude and 
longitude smooth because different locations were expected to ex-
hibit different trends in abundance during spawning aggregations. 
REML was used as the parameter estimation method. The default 
basis dimension parameter K was used for smoothing functions, 
because exploratory fits with larger K did not change the statistical 
significance of the model terms, but increased run time from a few 
minutes to several hours. The gam.check function was used to in-
form k selection, and while several k values were highly significant, 
increasing k values past 100 did not improve values for gam.check. 
The overall form of models was as follows: y ~ experience + s(moon 
phase, bs  =  “cc”) + current + averaged depth + habitat + s(bottom 

TABLE  1 Percentage of missing values for variables measured in 
association with observations of Queen Triggerfish (Balistes vetula) 
by citizen-science divers in The Bahamas and Turks and Caicos 
during 1994–2020 (Reef Environmental Education Foundation, 
REEF).

Variable (units) % Missing

Date of observation (decimal year) 0.06%

Surface temperature during observation (°F) 42.2%

Bottom temperature during observation (°F) 31.0%

Duration of observation period (minutes) 2.70%

Start time of observation (decimal hour) 0.45%

Visibility during observation (categorical) 0.92%

Average Depth of observation (categorical) 0.52%

Current experienced during observation (categorical) 1.24%

Habitat surveyed (categorical) 2.69%

Latitude of observation site (decimal degrees) 10.2%

Longitude of observation site (decimal degrees) 10.2%
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6  |    URQUHART et al.

temperature, bs = “tp”) + s(decimal day of year, bs = “cc”) + s(date, 
bs = “tp”) + s(bottom time, bs = “tp”) + s(start time, bs = “cc”) + te(lat-
itude, longitude, bs = “tp”, by = vetula breeding dummy variable).

For comparison of different modeling techniques, three differ-
ent interpretations of data were fit with GAMs using the MGCV 
package (Wood,  2017): binomial for presence/absence data, 
negative binomial for means imputed from abundance catego-
ries using Equation 1, and multinomial for abundance categories. 
The multinomial model was more limited than other models. Each 
category was fit with a different smooth function for the same 
explanatory variable, which significantly increased computation 
time to fit the model (i.e., the simplest multinomial model required 
a longer time to fit than the full AIC selected negative binomial 
model). Additionally, the complexity of the multinomial model was 
limited due to the division of data in each category being much 
smaller than the total dataset. In particular, fewer than 300 obser-
vations were in the “Many” category for this species, so a model 
with comparable complexity could not be fit for this category. Due 
to increased time to fit and increased complexity, a full AIC se-
lection was not conducted for the multinomial model. The only 
parameters considered for this simpler model were a latitude-
longitude tensor product and decimal date fit with thin-plate re-
gressor splines. For comparison, a second negative binomial model 
was fit to compare to the multinomial model using the same vari-
ables. For negative binomial models, model fit was evaluated using 
scaled residuals calculated by the DHARMa residual library in R 
(Hartig, 2022). Simulated residuals, based on model assumptions, 
of actual data fitted to simulated data, were compared to test if 
the model was appropriately specified and if underlying assump-
tions were correct.

All models were compared using a 5-fold cross-validation. Testing 
subset R2, RMSE, and average error were calculated for negative bi-
nomial and binomial models. For the binomial model, kappa, specific-
ity, sensitivity, and AUC were calculated using the PresenceAbsence 
R package (Freeman & Moisen, 2008; Appendix S1). For the negative 
binomial model, predictions were coerced to SFM categories (zeros 
included) following the same protocol as divers and the percent of 
correctly predicted categories was calculated. For the multinomial 
model, the percentage of correctly predicted categories was used 
as the sole metric.

To determine population trends for Queen Triggerfish, binomial 
and negative binomial models were fit with the year (1994–2020) 
as a categorical variable for testing the significance of a potential 
temporal trend in presence and abundance. The anova.gam function 
in mgcv was used to determine whether the linear trend was signif-
icant, based on approximate p-values, which were sufficient for our 
analysis (Wood, 2017). Confidence intervals on relative abundance 
were calculated using 95% confidence intervals for each year from 
the GAM, applied to abundances imputed from categories. These 
confidence intervals were produced based on the assumption made 
by the GAM that it is fitting to negative binomial observations, and 
do not account for the error introduced through the imputation of 
categorical data.TA
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3  |  RESULTS

3.1  |  Simulated data

Models fit to categorized data performed worse for all metrics 
than models fit to original data (Table 2). The exponential model 
had an overwhelmingly negative R2 and large RMSE and was by far 
the worst-fitting model. The three best models converged to an as-
ymptotic range of values after <5000 datapoints (Figure 4). Fitted 
metrics converged relatively quickly, so the additional variance in 
those metrics, relative to the uncategorized fit model, was primar-
ily due to error of the imputation method rather than a variation in 
sample size (Table 2). Average error of mean value imputation was 
closest to zero for all categorical imputed models and resulted in 
the highest R2. The R2 of mean imputed model predictions relative 

to uncategorized data was also underestimated by R2 of predic-
tions relative to the value imputed into the model. The reverse 
was true for minimum value imputation. Minimum value imputa-
tion and mean value imputation both had a similar slope, although 
minimum value imputation was shifted down with a negative in-
tercept. The mean value method was slightly overestimated, and 
the minimum value method severely underestimated the original 
uncategorized data.

3.2  |  REEF data

The AIC selection process left the binomial model with 11 variables 
and the negative binomial model with 9 variables (Table  3). Lunar 
phase was excluded from both the binomial and negative binomial 

F IGURE  4 Goodness of fit (R2) of 
predictions (Top) and average error 
of predicted values (Bottom) for the 
three best models relative to both 
uncategorized data and imputed data, 
based on citizen-science data (Reef 
Environmental Education Foundation, 
REEF) of Queen Triggerfish (Balistes 
vetula) in The Bahamas and Turks and 
Caicos during 1994–2020.
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8  |    URQUHART et al.

models, Breeding season, decimal day of the year, and average depth 
were excluded from the negative binomial model, and visibility was 
excluded from the presence-absence.

Model predictive performance in cross-validation was poor for 
both negative binomial and binomial models (Table 3, Table 4). The 
multinomial model predicted the correct SFMA category 68.2% 
(±1.1% standard deviation) of the time, and the simplified negative 
binomial model predicted the correct category 44.7% (±1.1%) of the 
time. The binomial model could not predict FMA categories, but cor-
rectly predicted presence-absence 72.5% (±0.6%) of the time. The 
values for AUC, Kappa, Specificity, and Sensitivity for the binomial 
model are shown in the (Appendix S1).

Most features were consistent among splines in the different 
models, in particular for negative binomial and binomial models. 
Positive observations decreased with the decimal year (Figure  5) 
and increased linearly with bottom time. The spatial distribution of 
Queen Triggerfish did not differ among models, and the spatial dis-
tribution during the breeding season had a single high anomaly in 
the southwest for the binomial model, although the lack of inclusion 
of breeding season indicated this could be a spurious feature of the 
binomial model (Appendix S1). Queen Triggerfish were most often 
observed during the afternoon in 76 °F water. The DHARMa residual 
plots did not show a clear pattern in simulated residuals for all mod-
els fitted to are included in (Appendix S1).

Year was highly significant (p < 0.01) as an annual trend (linearly 
related to date) in both binomial and negative binomial models, 
which indicated the Queen Triggerfish population declined since 
1994. The probability of observation and relative abundance both 
declined more than 50% since 1994 (Figure 5).

4  | DISCUSSION

4.1  | Model interpretation

Various methods have been developed to extract informa-
tion on the underlying abundance from REEF categories 
(Campbell et al., 2022; Tolimieri et al., 2017; Wolfe & Pattengill-
Semmens, 2013a). By testing these methods in simulation, it can 
be determined how appropriate they may be in different contexts. 
The near-identical slope of the mean and minimum imputation 
methods suggests that for analyzing trends both methods may 
perform comparably well. In absolute terms, though, the mini-
mum value consistently underestimated the true abundance and 
would be inferior in cases where the intercept of the model had 
a biologically relevant interpretation. Both the mean and mini-
mum value imputation methods also showed bias in the slope in 
simulated data, which could lead to a failure to detect a signifi-
cant trend. This limitation of REEF data is not unique to the im-
putation method, however, since the log categorical nature of the 
data collection allows for changes in abundance without changes 
in observed categories (Campbell et al.,  2022). The exponential 
density score imputation did not work well for imputing individual 
categories, although other studies have used density scores to 
track population trends without translating them to abundance 
(Campbell et al., 2022). Depending on the study system, the use 
of abundance information or the use of pure presence-absence 
information can provide better model performance (Fukuda 
et al.,  2012; Howard et al.,  2014). In this study, the models that 
incorporated abundance information (the negative binomial and 
multinomial) performed worse than the presence-absence model 

TABLE  3 Binomial and negative binomial ΔAIC scores for the 
best-fit model, with each variable removed (see Table 1 for variable 
definitions), for estimating the presence and abundance of Queen 
Triggerfish (Balistes vetula) in The Bahamas and Turks and Caicos 
during 1994–2020, based on marine citizen-science data (Reef 
Environmental Education Foundation, REEF).

Model terms omitted Binomial �AIC
Negative 
binomial �AIC

Full model 0 0

Visibility NA 15.32

Experience 49.39 15.38

Current 20.25 4.19

Bottom temperature 13.61 58.83

Decimal day of year 29.17 NA

Decimal year 125.48 188.69

Bottom time 88.78 62.92

Start time 103.96 50.14

Average depth 22.72 NA

Habitat 9.26 25.92

Latitude/longitude tensor 514.26 411.65

Tensor by = breeding variable 14.98 NA

Abbreviation: NA, term not included in the best-fit model.

TABLE  4 Mean and standard deviation of goodness of fit (R2), 
root-mean-squared error (RMSE), average error, and percent of 
categories predicted correctly for binomial and negative binomial 
cross-validation of ~15,000 surveys used to estimate the presence 
and abundance of Queen Triggerfish (Balistes vetula) in The 
Bahamas and Turks and Caicos during 1994–2020, based on marine 
citizen-science data (Reef Environmental Education Foundation, 
REEF). Binomial category prediction categories (1–0) differed from 
negative binomial prediction categories (0-SFM). Full prediction 
metrics for the binomial model are in Appendix S1.

Model Binomial
Negative 
binomial

Mean R2 0.155 0.084

SD R2 0.024 0.171

Mean RMSE 0.185 2.230

SD RMSE 5.85 × 10−3 0.315

Mean average error −1.03 × 10−4 0.037

SD average error 0.017 0.037

Mean % categories predicted 
correctly

72.54% 49.10%

SD % categories predicted 
correctly

0.56% 0.86%
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    | 9URQUHART et al.

(binomial). This likely depends on the species and study system 
and more comprehensive research is required to determine the 
relative efficacy of different methods applied to this data.

Accounting for variation from sources other than changes in 
abundance, as in our study, is important for the estimation of abun-
dance indices and CPUE from fisheries data (Maunder & Punt, 2004). 
For other citizen-science data, similar work has been done to ac-
count for observer effort, which can confound results if not con-
sidered (Johnston et al.,  2021). Differences between abundance 
and presence-absence models can also inform decisions. Exclusion 

of the breeding variable in the abundance model suggests that ei-
ther breeding behavior does not affect local abundances of Queen 
Triggerfish, or that there is not enough data to accurately predict 
over that range. The second seems more likely since this species 
forms seasonal breeding aggregations (Bryan et al., 2019). Exclusion 
of visibility from the presence-absence model, but inclusion of vis-
ibility in the abundance model, suggests that visibility hinders the 
counting of many individuals, but not the detection of the species 
when present. The 50% decline in the presence and abundance of 
Queen Triggerfish in The Bahamas and Turks and Caicos over the 

F IGURE  5 Relative abundance (Top) 
and probability of presence (Bottom), 
based on marine citizen-science data (Reef 
Environmental Education Foundation, 
REEF) (+95% confidence intervals), of 
Queen Triggerfish (Balistes vetula) in The 
Bahamas and Turks and Caicos during 
1994–2020.
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10  |    URQUHART et al.

last 20 years we detected is immediately relevant for species con-
servation and suggests that further investigation and management 
intervention may be warranted. Causes of this decline likely include 
fishing pressure, changes in diet, and habitat loss (Bryan et al., 2019; 
Hernández et al., 2019; Reinthal et al., 1984; Sadovy De Mitcheson 
et al., 2008). Current classification of Queen Triggerfish by the IUCN 
Red List is based on surveys of population trends from fisheries data 
within the Caribbean, so surveys of population trends are needed in 
The Bahamas and Turks and Caicos (Liu et al., 2015).

For many coastal fisheries, limited data on catch or abundance 
limits the ability of traditional models to detect population trends 
(Sagarese et al., 2018). REEF data can provide broad-scale, inexpen-
sive data that is independent of fisheries catch for coastal species 
(Campbell et al.,  2022). By translating categorical abundance data 
into values that can be modeled at the survey level, we developed 
and tested a simple and effective way to account for variation in sur-
vey characteristics while predicting overall trends in abundance of 
Queen Triggerfish in The Bahamas and Turks and Caicos. We found 
that trends in abundance and presence of Queen Triggerfish differed 
little, but the same may not be true for other species (Campbell 
et al., 2022). These methods could be quickly applied to other coastal 
fisheries and could be used to further incorporate REEF data into the 
IUCN red list process beyond presence-absence models already in 
use (Gravem et al., 2020).

4.2  |  Potential future research

Surveyor experience, species identification, data screening, and 
missing data all likely affected our findings. The binary surveyor ex-
perience level used by REEF was a significant factor for the models 
used in our study. We used the Queen Triggerfish as a model or-
ganism due to its ease of identification and observation, whereas 
other species are likely to be more difficult to identify or observe. 
Incorporating information about the relative detectability of species 
might be necessary for multispecies studies (Ashley et al.,  2022). 
Further exploration is needed of the interplay between surveyor 
experience and species identification. For example, other surveyor 
experience metrics could improve model performance by creating a 
continuous experience metric (Kelling et al., 2015). Surveyor experi-
ence also likely affects missing data. We omitted data if records in 
multiple fields were missing, which could bias results if data is not 
randomly missing. Future studies could account for missing data ei-
ther through multiple imputations or data augmentation (Nakagawa 
& Freckleton, 2008). Such analyses were outside the scope of our 
study, but given that roughly half of the data available for our study 
was omitted due to problems with missing data, the need for bet-
ter missing data handling is an important area for potential future 
research.

We were only able to examine variables collected by REEF sur-
veyors, while broader explorations of multiple long-term monitor-
ing datasets have successfully integrated REEF observations (Grüss 
et al., 2018). Similar to presence-absence modeling that integrated 

REEF observations, integration with actual counts using similar 
methods is promising. The precision of REEF abundance category 
observations was lower than actual counts, but the benefits of its 
inclusion could overcome quality concerns. Similarly, many of the 
explanatory variables collected by REEF could be supplemented by 
other sources, such as information from coral reef mapping. Divers 
often swim through multiple habitats while on a dive and many div-
ers do not enter habitat information into their survey data. The use 
of external sources would increase the amount of usable data for 
modeling and thereby improve performance. In addition to external 
environmental data, actual count data from the same region could 
be compared to model-based estimates of presence and abundance. 
The conversion function we used in our analysis was constructed 
by comparing actual counts to REEF categories, but the models 
we used have yet to be validated in this way (Wolfe & Pattengill-
Semmens, 2013a, 2013b).

More sophisticated imputation methods could be used to infer 
counts from SFMA categories. Substituting the inferred mean is a 
common and simple imputation method, and performed well in our 
study. Future work could use a more complex model to infer means, 
perhaps by separating data by years or habitat types, for which dis-
tributions of abundance categories may differ. Methods such as mul-
tiple imputation or Bayesian methods could be used to assign each 
imputed count to a theoretical distribution of values based on a trun-
cated lognormal distribution within a range of possible values (e.g., 
2 to 10 for F) (Nakagawa & Freckleton, 2008). Such methods might 
more accurately capture the uncertainty in estimated relationships 
between variables because they would include imputation error in 
the y variable. However, such methods would lack the simplicity and 
ease of use of our method.

5  |  CONCLUSIONS

Models explored herein suggested a biologically relevant decline in 
Queen Triggerfish abundance and were able to account for several 
variables collected within the REEF dataset. Similar methods may be 
useful for expanding the analysis of REEF abundance data to other 
species in other areas while accounting for variance introduced by 
surveyor behavior and skill. Future research should compare model-
based relative abundance estimates to real-world counts, incorpo-
rate other environmental variables, and explore other methods for 
incorporating surveyor experience. Our model-based estimates of 
abundance based on REEF data imply that Queen Triggerfish are de-
clining in The Bahamas and Turks and Caicos and may require man-
agement interventions to reverse the decline.
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