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Food webs represent one of the most complex aspects of community biotic interactions. Complex food webs are represented as
networks of interspeci�c interactions, where nodes represent species or groups of species, and links are predator-prey interactions.
is paper presents reconstructions of coral reef foodwebs in three Greater Antillean regions of the Caribbean: the Cayman Islands,
Cuba, and Jamaica. ough not taxonomically comprehensive, each food web nevertheless comprises producers and consumers,
single-celled andmulticellular organisms, and species foraging on reefs and adjacent seagrass beds. Species are grouped into trophic
guilds if their prey and predator links are indistinguishable. e data list guilds, taxonomic composition, prey guilds/species, and
predators. Primary producer and invertebrate richness are regionally uniform, but vertebrate richness varies on the basis of more
detailed occurrence data. Each region comprises 169 primary producers, 513 protistan and invertebrate consumer species, and
159, 178, and 170 vertebrate species in the Cayman Islands, Cuba, and Jamaica, respectively. Caribbean coral reefs are among
the world’s most endangered by anthropogenic activities. e datasets presented here will facilitate comparisons of historical and
regional variation, the assessment of impacts of species loss and invasion, and the application of food webs to ecosystem analyses.

1. Introduction

Coral reef communities of the Greater Antilles of the
Caribbean Sea have a long history of anthropogenic distur-
bance, driven by the exploitation for food of both vertebrate
and invertebrate species [1, 2].More recently, coral bleaching,
storm effects, coral disease, coastal development, pollution,
invasive species, and a reduction of herbivorous control of
algae in spatial competition with coral [3] have resulted
in dramatic declines of diversity and abundance on reefs
throughout the region [4–6]. e ongoing and predicted
increases of seawater temperature and acidi�cation as con-
sequences of anthropogenic global warming make coral reefs
among the most endangered ocean ecosystems, and Greater
Antillean reefsmay be particularly vulnerable because of their
past and recent histories of perturbation [7]. It is therefore
increasingly important to integrate species-level data on
systematics, ecology, and biogeography into systems-level

data that are informative to regional conservation and man-
agement efforts. Here we use food web networks, in close
regional proximity, to represent one important aspect of
species ecology and present regional variation of detailed
ecological networks.

Food web networks seek to capture the complexity of
patterns of trophic interaction in biological communities [8].
ese networks serve at least two purposes from the perspec-
tive of ecosystem protection. First, the basic topology of a
food web network is ameasure of the robustness or resistance
of that community to species removal [9]. Such removals
represent local or global extinctions. Network representation
of communities can be used to discover interactions that
would be lost as a consequence of extinction, and chains
or pathways that would be disrupted [10]. ey may be
used additionally to infer possible secondary extinctions as
a result of lost or disrupted paths [11]. e simplest such
inference, topological secondary extinction [12], predicts the
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F 1: Map of the northern Caribbean Basin showing regions
covered in this paper. Outlines around each region, the Cayman
Islands, Cuba, and Jamaica, trace the 100-meter depth contour
around each island or group of islands, within which all reef sites
used in this study are included. Cyan colour: Cayman Islands;
green colour: Cuba; red colour: Jamaica. e region outlined in
red, but disconnected from the island of Jamaica, represents Pedro
Bank (Map courtesy of e World Marble Globe, version 1.3.3,
http://edu.kde.org/marble/).

secondary extinction of a species if it loses all its incoming
paths, that is, its prey resources, as a consequence of an
initial extinction. Topological extinction thus measures the
structural robustness of a food web [13], but it is limited
to a minimum estimate of secondary extinction because it
functions only in the direction of energy �ow (bottom-up)
[14]. A further limitation is imposed by the typical lack of
demographic parameters in complex food web networks (but
see [15]), forcing one to ignore demographic changes that
could result from the initial extinction(s), such as top-down
trophic cascades and Allee effects. Nevertheless, parameter
modeling can indicate the potential for demographic insta-
bility and tipping points in the community.

A second purpose is the assessment of temporal and geo-
graphic variance of interactionswithin communities. Tempo-
ral variation will arise under conditions of varying or chang-
ing environments, such as those caused by climate change or
biotic invasions, and the possible microevolutionary adap-
tation to such changes. Geographic variation is expected
on the basis of varying composition between communities
(𝛽𝛽 diversity), even those of the same type, whether driven
by local environmental differences or stochastic processes,
as well as different histories and regimes of anthropogenic
disturbance. is measurement of temporal and geographic
variation, however, is challenged by the level of ecological
detail required to construct a food web network.

e food webs presented in this paper capture, to the
greatest extent currently possible, the patterns of trophic
interactions in coral reef communities of the Cayman Islands,
Cuba, and Jamaica. In constructing the foodwebswe strove to
include asmany species as possible, their trophic interactions,
and at least for vertebrates whether those species foraged
preferentially on coral reefs, or seagrass beds, or both. e
results are three highly detailed food webs that should both

serve as useful sources of ecological data within each region
and facilitate comparisons across that area of the Greater
Antilles and beyond as the number of similar regional
datasets increases. e datasets will also be useful tools for
assessing the robustness of these ecologically and economi-
cally important communities, and the potential outcomes of
various types of disturbance and conservation measures.

2. Methodology

is study considers coral reef systems in three national
regions: the Cayman Islands, Cuba, and Jamaica. ough
the systems are not contiguous within each region, for
example, offshore islands and shallows such as Pedro Bank
off Jamaica, we consider the reefs within each region to
be subject to uniform political administration and subject
to similar anthropogenic policies and activities (Figure 1).
We therefore refer in the study to three individual regions,
namely, the Cayman Islands, Cuba, and Jamaica. Regions
are certainly heterogeneous in terms of reef physiography
and oceanographic conditions as well as anthropogenic
factors. For example, each region has established marine-
protected areas (41, 42, and 12 in number for the Cayman
Islands, Cuba, and Jamaica, resp.; seeWorld Bank Data Cata-
log, http://data.worldbank.org/data-catalog)where one could
expect local species richness and abundance of exploited
species to be greater than areas where harvesting is permitted
[16–18]. Nevertheless, our data are pooled across localities in
each region for two reasons. First, the absence of a species
from a locality because of anthropogenic impacts could be
intermittent and dependent on the timescales of replenish-
ment by immigration and extirpation. Second, food webs
vary in time and space in terms of both species composition
as well as the nature (strength and even direction) of trophic
interactions [12]. It is therefore useful to present data that
are integrated across �ne-scale spatial and temporal variation
as representative of a region’s typical or expected food webs.
ose data in turn can serve as starting points for further
examination of the effects of �ner-scale variation, such as
differences between exploited, protected, and pristine areas.
In effect, food webs at �ner geographic or temporal scales will
be subsets of our food webs, with the latter greatly facilitating
construction of �ner-scale webs.

e compositions of coral reef and associated seagrass
communities of the three regions were assessed by extensive
review of the available literature and databases [19–124].
Taxa present elsewhere in the Caribbean Sea or Gulf of
Mexico, but not recorded explicitly from one of our Greater
Antillean locations, were omitted from the dataset. We
included only species for which reasonable detail of prey
and predator species as well as foraging habitat (see the
following) could be obtained; anecdotal records of trophic
interactions were not used. is resulted in the underrepre-
sentation of several potentially important taxonomic groups,
for example, Asteroidea and Cirripedia. Nevertheless, the
dataset includes primary producer species representative
of coccolithophores, diatoms (including epiphytic species),
�lamentous algae, coarsely branched algae, jointed calcareous
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F 2: Number of sampling events per regional site and number
of species discovered, as recorded in the REEF database [125]. Blue:
Cayman Islands; green: Cuba; red: Jamaica. Lines are fractional
polynomial regressions �t to each dataset. Functions are as follows:
Cayman Islands: 24.6𝑥𝑥−1 + 37.7 ln 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥 ; Cuba: 20.3 ln 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥;
Jamaica: 1.3𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥 𝑥.

algae, thick leathery algae, coralline encrusting algae, and sea-
grasses. Planktonic bacteria are represented as a single entry,
or node, in the networks. Consumers are represented by
dino�agellates, planktonic and benthic foraminifera, tintin-
nids, epibenthic sponges, endolithic sponges, ahermatypic
and hermatypic corals, copepods, amphipods, appendicu-
larians, siphonophores, isopods, chaetognaths, scyphozoans,
gorgonians, corallimorphs, zoanthids, echinoids, bivalves,
gastropods (including pteropods and nudibranchs), poly-
chaetes, holothurians, malacostracan crustaceans, cartilagi-
nous and bony �sh, and sea turtles.

Nonvertebrate taxa were treated as occurring uniformly
among all three locations because of a general lack of
biogeographic speci�city at this scale available in published
data. More precise data are available for vertebrate species,
however, and we took advantage of this to differentiate the
three food webs. Vertebrate occurrences were obtained from
REEF (http://www.reef.org/), GBIF (http://www.gbif.org/),
and Fishbase (http://www.�shbase.org/) databases and uti-
lized to conservatively minimize apparent differences among
the locations. We searched the REEF Volunteer Survey
database [125] for records of every vertebrate species in our
literature dataset. ose species that are not recorded in the
survey, but are present in our dataset, were automatically
considered to be present. All REEF sites in each region
were queried individually, but the results were combined to
construct the regional species lists. We included both Expert
and Novice observations, again to be conservative in our
estimate of the compositional differences among the regions.
Our queries covered the period from 1999 to 2010. We
considered the presence of a species in at least one site within
a region to count for the entire region. is allows for the

possibilities that species were overlooked during surveys and
that individuals at one site could relocate to or reproductively
seed another site. Furthermore, we ignored demographic data
such as estimates of population densities, which are extremely
low for some species, and recorded a species as present even if
only a single individual was observed, because the REEF data
bear a signi�cant sampling effect signal. e impact of sam-
pling effort and number of reports was assessed by comparing
the number of reports per site and the number of species
recorded for each location. Results indicate clearly that Cuba
and Jamaica have been sampled far fewer times than have
the Cayman Islands and that lower species richnesses of the
former locations in the REEF databases could very well be
reversed if sampling was intensi�ed (Figure 2). Moreover,
given the much greater area of Cuba’s coastal region, impor-
tant refuges and relatively pristine areas such as Los Jardines
de Reina are not captured effectively in the REEF database.

We therefore augmented the data for each location with
occurrences recorded in the GBIF and Fishbase databases.
While the REEF data were constrained to reports from
1999 to 2010, all GBIF and Fishbase occurrences in the
Twentieth century were incorporated into our dataset. is
results in a very conservative estimate of present species
composition, since the historic databases include species
from each location that are not only absent in the REEF
surveys but may in fact now be extirpated from a locality.
Finally, maximum body length was recorded for all �sh
species as listed in Fishbase.

Food web assembly was as follows. We included species
both restricted to coral reefs and those commonly found
in adjacent seagrass beds. All eukaryotic clades resolvable
to the species level were considered for inclusion in the
food webs, including protistan producers and consumers, but
we included only species for which diet could be speci�ed.
Most primary producer and invertebrate species were then
organized into trophic guilds [11] unless consumer diets
are highly specialized and known with speci�city; such is
the case for cephalopod and stomatopod species. Each guild
comprises data on taxonomic composition, trophic ecologies
(species prey and predators), and primary habitat. Given
uncertainty in the full array of trophic interactions for most
of these species, a trophic guild is an aggregation of species
where members of a guild potentially share prey drawn
from the same guild(s), likewise for predators, and share the
same habitat. One hundred and sixty-nine primary producer
species were subsequently aggregated into nine guilds while
513 protistan and invertebrate consumers were aggregated
into 99 guilds (Figure 3).

Cartilaginous and bony �sh diets were obtained from
the detailed reports of Randall [39] and Opitz [126]. e
Opitz ECOPATH data proved to be particularly valuable,
being based on extensive gut analyses, though primarily from
the �S Virgin Islands. Many �sh dietary items, however,
are present in very small proportions of total diet diversity
and may therefore represent only occasional feeding rather
than major dietary components or are possibly ingested
incidentally. We thus included only those prey items which
comprised 1% ormore of a species diet. All vertebrate species
were then categorized into three foraging groups: species
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F 3: Food web illustration of trophic guilds and trophic
species, and trophic interactions between them.is web represents
the Cuban dataset. All nodes and interactions in the data are
illustrated. ere are 266 nodes and 3899 interactions (edges) in
the network.e obvious complexity of the network emphasizes the
improbability of any easy simpli�cation of the data. Node colours
are as follows: red: primary producers; magenta: protistan and
invertebrate guilds; yellow: vertebrate species and trophic species.

that forage primarily on coral reefs (reef foragers), those
that forage primarily in seagrass beds (seagrass foragers),
and those that forage frequently in both habitats (reef-
seagrass foragers) [126]. Our documentation, however, does
not preclude the presence of these species in other coastal
habitats not covered in our study, for example, mangrove
environments. Vertebrate species were subsequently aggre-
gated if they shared exactly the same prey and predators,
thereby representing trophic species [127]. Trophic species
are conceptually a subset of trophic guilds [14], and hence
the latter term only is used from here on. Ultimately, 184
vertebrate species were aggregated into 162 trophic species
(Figure 3).

3. Dataset Description

e dataset associated with this Dataset Paper consists of 7
items which are described as follows.

Dataset Item 1 (Table). Trophic data for the Cayman Islands.
Data specify trophic guilds, the number of prey per guild, a
list of those prey guilds, and the major foraging habitat of the
guild. In the �rst column is given the Guild Number. Guild
numbers are standard among all the datasets; for example,
guild number 1 represents planktonic bacteria in the Cay-
man, Cuban, and Jamaican datasets. In the second column
(Guild Description) is given the common language guild
descriptions. e descriptions indicate the major trophic
niche of the guild in the case of multispecies guilds (e.g.,

Macroplanktonic carnivores I), the major taxon of the guild
(e.g., Eucidaris), or in the case of vertebrates, a common
name of the species (e.g., scorpion�sh). In the third column
(Foraging Habitat) is given the major foraging habitat of
vertebrate guild members. In this column, r means reef; rg,
reef and seagrass beds; and g, seagrass beds. In the fourth
column (Number of Prey) is given the total number of guilds
that contain species that are preyed upon by the guild in
question. In the ��h column (Prey) is given a list of prey
guilds. Missing data are indicated by a period (.).

Column 1: Guild Number
Column 2: Guild Description
Column 3: Foraging Habitat
Column 4: Number of Prey
Column 5: Prey

Dataset Item 2 (Table). Trophic data for Cuba. Data specify
trophic guilds, the number of prey per guild, a list of those
prey guilds, and themajor foraging habitat of the guild. In the
�rst column is given the Guild Number. Guild numbers are
standard among all the datasets; for example, guild number
1 represents planktonic bacteria in the Cayman, Cuban, and
Jamaican datasets. In the second column (Guild Descrip-
tion) is given the common language guild descriptions. e
descriptions indicate the major trophic niche of the guild
in the case of multispecies guilds (e.g., Macroplanktonic
carnivores I), the major taxon of the guild (e.g., Eucidaris),
or in the case of vertebrates, a common name of the species
(e.g., scorpion�sh). In the third column (Foraging Habitat) is
given themajor foraging habitat of vertebrate guildmembers.
In this column, r means reef; rg, reef and seagrass beds; and
g, seagrass beds. In the fourth column (Number of Prey) is
given the total number of guilds that contain species that are
preyed upon by the guild in question. In the ��h column
(Prey) is given a list of prey guilds. Missing data are indicated
by a period (.).

Column 1: Guild Number
Column 2: Guild Description
Column 3: Foraging Habitat
Column 4: Number of Prey
Column 5: Prey

Dataset Item 3 (Table). Trophic data for Jamaica. Data specify
trophic guilds, the number of prey per guild, a list of those
prey guilds, and themajor foraging habitat of the guild. In the
�rst column is given the Guild Number. Guild numbers are
standard among all the datasets; for example, guild number
1 represents planktonic bacteria in the Cayman, Cuban, and
Jamaican datasets. In the second column (Guild Descrip-
tion) is given the common language guild descriptions. e
descriptions indicate the major trophic niche of the guild
in the case of multispecies guilds (e.g., Macroplanktonic
carnivores I), the major taxon of the guild (e.g., Eucidaris),
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or in the case of vertebrates, a common name of the species
(e.g., scorpion�sh). In the third column (Foraging Habitat) is
given themajor foraging habitat of vertebrate guildmembers.
In this column, r means reef; rg, reef and seagrass beds; and
g, seagrass beds. In the fourth column (Number of Prey) is
given the total number of guilds that contain species that are
preyed upon by the guild in �uestion. In the �h column
(Prey) is given a list of prey guilds. Missing data are indicated
by a period (.).

Column 1: Guild Number
Column 2: Guild Description
Column 3: Foraging Habitat
Column 4: Number of Prey
Column 5: Prey

Dataset Item 4 (Table). Guild key. is is a list of all guilds
present in Dataset Items 1–3 (Tables) and the taxa assigned
to those guilds. ere is a total of 265 guilds, though none
of the regions described contains all those guilds. ere are
also several guilds or species that are absent from all the
regions, but have nevertheless been recorded in the northern
Caribbean region, and are likely to be present in undescribed
refuges or occasional members of the regions, for example,
the tiger sharkGaleocerdo cuvieri. In the �rst column is given
the Guild Number; in the second (Taxa), the taxa assigned
to guild; in the third (Fish Body Length), the average body
size (fork length, cm) of bony and cartilaginous �sh species.
Maximumbody size is recorded if average size is not available.
Missing data are indicated by a period (.). In columns 4–6
is shown the presence of vertebrate species in the Cayman
Islands, Cuba, or Jamaica indicated by “x” sign.

Column 1: Guild Number
Column 2: Taxa
Column 3: Fish Body Length (cm)
Column 4: Cayman Islands
Column 5: Cuba
Column 6: Jamaica

Dataset Item 5 (Binary Matrix). Binary adjacency matrix of
the Cayman Islands food web. Rows are predatory guilds and
columns are prey. e 𝑖𝑖𝑖𝑖th element of the matrix is 1 if guild
𝑖𝑖 preys upon species in guild 𝑗𝑗, and 0 otherwise. Note that the
matrices are therefore asymmetric about the diagonal, and
that there are 265 rows representing each guild in the dataset.
Taxa that are missing from the food web, for example, the
tiger shark Galeocerdo cuvieri, are included as disconnected
nodes, that is, rows and columns comprising zero elements
only. is is for consistency with future datasets of related
regions in which the species might be present.

Dataset Item 6 (Binary Matrix). Binary adjacency matrix of
the Cuban food web. Rows are predatory guilds and columns
are prey. e 𝑖𝑖𝑖𝑖th element of the matrix is 1 if guild 𝑖𝑖 preys

upon species in guild 𝑗𝑗, and 0 otherwise. Note that the
matrices are therefore asymmetric about the diagonal and
that there are 265 rows representing each guild in the dataset.
Taxa that are missing from the food web, for example, the
tiger shark Galeocerdo cuvieri, are included as disconnected
nodes, that is, rows and columns comprising zero elements
only. is is for consistency with future datasets of related
regions in which the species might be present.

Dataset Item 7 (Binary Matrix). Binary adjacency matrix
of the Jamaican food web. Rows are predatory guilds and
columns are prey. e 𝑖𝑖𝑖𝑖th element of the matrix is 1 if guild
𝑖𝑖 preys upon species in guild 𝑗𝑗, and 0 otherwise. Note that
thematrices are therefore asymmetric about the diagonal and
that there are 265 rows representing each guild in the dataset.
Taxa that are missing from the food web, for example, the
tiger shark Galeocerdo cuvieri, are included as disconnected
nodes, that is, rows and columns comprising zero elements
only. is is for consistency with future datasets of related
regions in which the species might be present.

4. Concluding Remarks

e datasets presented here are syntheses of decades of
work by multiple ecologists and systematists; yet they are
far from being taxonomically comprehensive. ere is a
pressing need for additional data of the ecological roles of
organisms in important communities such as coral reefs.
Nevertheless, the current data should prove to be helpful in
both understanding the long-term and large-scale dynamics
of these communities and in formulating strategies for the
protection of the communities and species within. Ecosystem
dynamics play out over multiple scales of time and space
[128] and multiple levels of biological organization, from
organisms to ecosystems themselves [129]. Organizing data
relevant to those scales, such as shiing historical baselines,
multiple disturbances that act on different spatial scales,
and variance of community composition across those scales,
presents signi�cant challenges to the formulation of coherent
strategies for the conservation, restoration, and sustainable
economic use of coral reef ecosystems in the Caribbean
region and elsewhere [6, 130]. At the same time, it is
understood that the nature of a species interactions, for
example, number or strength, can be important determinants
of its probability of extinction (or survival) under different
circumstances. It is also understood that the con�gurations
of those interactions for all species in a community are
important determinants of the communities resilience to
change or robustness against disturbances. Complex network
food webs present a basic scaffolding for tying together data
on an ecosystem’s species richness, biotic interactions, and
functional diversity. Much of the work relating food web
properties to ecosystem health has dealt so far with model
or relatively small communities [131].e datasets presented
heremake it possible to extend this work to an ecosystem that
is both one of the ocean’s richest and most complex and one
of its most critically endangered [7].
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Finally, these datasets are both starting points and works
in progress. ey may be used by workers to examine
regionwide phenomena such as the trophic impacts of coral
bleaching or invasive species, and likewise they can be
subsampled to re�ect within-region variation of community
composition and anthropogenic factors. ey are works in
progress because they will be revised as data on those already
included, as well as omitted species become available, and as
the state of Caribbean coral reefs continues to evolve.

Dataset Availability

e dataset associated with this Dataset Paper is dedicated to
the public domain using the CC0 waiver and is available at
http://dx.doi.org/10.7167/2013/857470/dataset/.
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